beginner.guide v39

beginner.guide_v39

] COLLABORATORS
TITLE :
beginner.guide_v39
ACTION NAME DATE SIGNATURE
WRITTEN BY April 16, 2022

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

beginner.guide_v39 iii

Contents

1 beginner.guide_v39 1
1.1 beginner.guide L e 1
1.2 beginner.guide_v39/Introduction to AmigaE o 2
1.3 beginner.guide_v39/A Simple Program 3
1.4 beginner.guide_v39/Thecode 3
1.5 beginner.guide_v39/Compilation e 4
1.6 beginner.guide_Vv39/EXecution e e e e e e e 4
1.7 beginner.guide_v39/Understanding a Simple Program o o oo L. 5
1.8 beginner.guide_v39/Changing the Message 0 v i i i e e e 5
1.9 beginner.guide_v39/Tinkering withtheexample 5
1.10 beginner.guide_v39/Briefoverview L 6
1.11 beginner.guide_v39/Procedures i e e e e e e e e e 6
1.12 beginner.guide_v39/Procedure Definition 7
1.13 beginner.guide_v39/Procedure Execution L e 7
1.14 beginner.guide_v39/Extending the example e 7
1.15 beginner.guide_v39/Parameterso e e 8
1.16 beginner.guide_v39/Strings e e e e 8
1.17 beginner.guide_v39/Style Reuse and Readability 9
1.18 beginner.guide_v39/The Simple Program L 9
1.19 beginner.guide_v39/Variables and Expressionso e 10
1.20 beginner.guide_v39/Variables L e e e 10
1.21 beginner.guide_v39/Variable types e 11
1.22 beginner.guide_v39/Variable declaration e e 11
1.23 beginner.guide_v39/Assignment L. L e e e e 11
1.24 beginner.guide_v39/Global and local variables 12
1.25 beginner.guide_v39/Changing the example L 14
1.26 beginner.guide v39/EXpressions e e e 15
1.27 beginner.guide_v39/Mathematics e e 16
1.28 beginner.guide_v39/Logic and cOmparison it e e e e e e e e e e e e e 16
1.29 beginner.guide_v39/Precedence and grouping oo 17

beginner.guide_v39 iv

1.30
1.31
1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64
1.65
1.66
1.67
1.68

beginner.guide_v39/Program Flow Control 19
beginner.guide_v39/Conditional Block e 19
beginner.guide_v39/IFblock 20
beginner.guide_v39/IF eXpression e e e e e e e e e e e e e e 22
beginner.guide_v39/SELECT block 23
beginner.guide_v39/L00PS e e e e e e e 24
beginner.guide_v39/FOR 100D e 24
beginner.guide_v39/WHILE loop e 25
beginner.guide_v39/REPEAT.UNTIL loop it it 27
beginner.guide_v39/Summary L. e e e e e e e 27
beginner.guide_v39/Format and Layout 28
beginner.guide_v39/Identifiers L L. e e e e e 29
beginner.guide _v39/Statements e e e e e e e e 29
beginner.guide_v39/Spacing and Separators e e e e e e e 31
beginner.guide_v39/Comments e e e e e e e 31
beginner.guide_v39/Functions e e e e e e e e e 31
beginner.guide_v39/Procedures as Functions oL 32
beginner.guide_v39/One-Line Functions e 33
beginner.guide _v39/Constants e e e e e e e e 34
beginner.guide_v39/Numeric Constants L e e e e e e e e e e e 34
beginner.guide_v39/String Constants Special Character Sequences 35
beginner.guide_v39/Named Constantst e e e e e e e e 36
beginner.guide_v39/Enumerations oL e 36
beginner.guide_v39/Sets L . e e e e e 37
beginner.guide_v39/Types L 38
beginner.guide_v39/LONG Type o i i e e e e e e e 39
beginner.guide_v39/Default type 39
beginner.guide_v39/Memory addresses e e e e e e e e e e e e e 40
beginner.guide_v39/PTR Type e 40
beginner.guide_v39/Addresses L. e e e e e e 40
beginner.guide_v39/Pointers L. 41
beginner.guide_v39/Indirect types e e e e e e e e e e 42
beginner.guide_v39/Finding addresses (making pointers) 42
beginner.guide_v39/Extracting data (dereferencing pointers)o 43
beginner.guide_v39/Procedure parametersol 45
beginner.guide_v39/ARRAY Type e 45
beginner.guide_v39/Tablesof data 46
beginner.guide_v39/Accessing array data L. Lo e 46

beginner.guide_v39/Array pointers L. 48

beginner.guide_v39 v

1.69 beginner.guide_v39/Point to otherelements 49
1.70 beginner.guide_v39/Array procedure parameters o i e e e e e e e e e e e e e e e e 50
1.71 beginner.guide_v39/OBJECT Type o o o i i i 51
1.72 beginner.guide_v39/Example object e e 52
1.73 beginner.guide_v39/Element selection L 52
1.74 beginner.guide_v39/Element types o it e e e e e e e e e e e e 53
1.75 beginner.guide_v39/Amiga system Objects e e e e e e 54
1.76 beginner.guide_v39/LIST and STRING Types o i i i i e e e e e e e e e 54
1.77 beginner.guide_v39/Normal strings and E-strings oo oo 55
1.78 beginner.guide_v39/String functions e e e e e e 56
1.79 beginner.guide_v39/Listsand E-lists e 60
1.80 beginner.guide_v39/List functions e e e 61
1.81 beginner.guide_v39/CompleX tyPeS v o ot i e e e e e e e e 63
1.82 beginner.guide_v39/Typed lists o e e e e e e e 63
1.83 beginner.guide_v39/Staticdata e e 64
1.84 beginner.guide_v39/Linked Lists e e e 65
1.85 beginner.guide_v39/More About Statements and Expressions o 0oL 67
1.86 beginner.guide_v39/Turning an Expression into a Statement L. 67
1.87 beginner.guide_v39/Initialised Declarations 68
1.88 beginner.guide_v39/ASSINMENtS e e e e e e e e e e e e e 69
1.89 beginner.guide_v39/More EXpressions i e e e e e e e 70
1.90 beginner.guide_v39/Side-effects e 70
1.91 beginner.guide v39/BUT expression i e 71
1.92 beginner.guide_v39/Bitwise ANDand OR e 71
1.93 beginner.guide v39/SIZEOF expression it e 73
1.94 beginner.guide_v39/More Statementst e e e e e e e e e e e e e e e 74
1.95 beginner.guide v39/INC and DEC statements e 74
1.96 beginner.guide_v39/Labelling and the JUMP statement v, 74
1.97 beginner.guide_v39/LOOPblock e 76
1.98 beginner.guide_v39/Quoted Expressions e e e e e 76
1.99 beginner.guide_v39/Evaluation e 77
1.100beginner.guide_v39/Quotable eXpressions e e e e e e e e e e e e e 78
1.101beginner.guide_v39/Lists and quoted eXpressionso e e e 78
1.102beginner.guide_v39/Assembly Statements e e e e e e e 79
1.103beginner.guide_v39/Assembly and the E language oL oL 80
1.104beginner.guide_v39/Static MEMOTY oo e e e e e e e 81
1.105beginner.guide_v39/Things to watchoutfor oo 82
1.106beginner.guide_v39/E Built-In Constants Variables and Functions 82

1.107beginner.guide_v39/Built-In Constants L e 83

beginner.guide_v39 Vi

1.108beginner.guide_v39/Built-In Variables L 84
1.109beginner.guide_v39/Built-In Functions e e 85
1.110beginner.guide_v39/Input and output functions 86
1.111beginner.guide_v39/Intuition support functions L e 88
1.112beginner.guide_v39/Graphics functions L 94
1.113beginner.guide_v39/Maths and logic functions 95
1.114beginner.guide_v39/System support functions 97
1.115beginner.guide_v39/Modules L e e e e e 98
1.116beginner.guide_v39/Using Modules 98
1.117beginner.guide_v39/Amiga System Modules 99
1.118beginner.guide_v39/Non-Standard Modules L 99
1.119beginner.guide_v39/Example Module Use e e 100
1.120beginner.guide_v39/Exception Handling 100
1.121beginner.guide_v39/Procedures with Exception Handlers 101
1.122beginner.guide_v39/Raising an Exception 101
1.123beginner.guide_v39/Automatic Exceptions e e 104
1.124beginner.guide_v39/Raise within an Exception Handler 105
1.125beginner.guide_v39/Recursion e e e e e e e 106
1.126beginner.guide_v39/Factorial Example L 107
1.127beginner.guide_v39/Mutual Recursion L e e e 109
1.128beginner.guide_v39/Binary Trees o i e e 109
1.129beginner.guide_v39/Stack (and Crashing) e e 113
1.130beginner.guide_v39/Stack and Exceptions L. L 113
1.131beginner.guide_v39/Introduction to the Examples 114
1.132beginner.guide_v39/Timing Expressions e 114
1.133beginner.guide_v39/Argument Parsing L e e e 117
1.134beginner.guide_v39/Any AmigaDOS 117
1.135beginner.guide_v39/AmigaDOS 2.0 (and above) 118
1.136beginner.guide_v39/Gadgets IDCMP and Graphics 119
1.137beginner.guide_v39/Gadgets e e e e 119
1.138beginner.guide_v39/IDCMP Messages e 120
1.139beginner.guide_v39/Graphics e e e e e e 121
1.140beginner.guide_v39/Screens e 122
1.141beginner.guide_v39/Recursion Example o 123
1.142beginner.guide_v39/Common Problems oL o 127
1.143beginner.guide_v39/Assignment and Copyingo 127
1.144beginner.guide_v39/Pointers and Memory Allocation oL 128
1.145beginner.guide_v39/String and List Misuse e 128

1.146beginner.guide_v39/Initialising Data oL 129

beginner.guide_v39 vii

1.147beginner.guide_v39/Freeing Resources e 129
1.148beginner.guide_v39/Array and Object Element Selection 129
1.149beginner.guide_v39/Pointers and Dereferencing L e 130
1.150beginner.guide_v39/New Features e 130
1.151beginner.guide_v39/Default Arguments L 130
1.152beginner.guide_v39/Multiple Return Values L 131
1.153beginner.guide_v39/NEW Operator i i ittt e e e e 132
1.154beginner.guide_v39/Object Inheritance L 133
1.155beginner.guide_v39/Code Modules e 135
1.156beginner.guide_v39/SELECT OF Statement o 0 ittt et e e e e e 136
1.157beginner.guide_v39/Syntax Description L. e 137
1.158beginner.guide_v39/Lex Syntax o e e e e e 138
1.159beginner.guide_v39/Parse Syntaxo e e e e e e e 138
1.160beginner.guide_v39/Other Information L 140
1.161beginner.guide_v39/Amiga E Versions e 141
1.162beginner.guide_v39/Further Reading L 141
1.163beginner.guide_v39/Amiga E Author 142
1.164beginner.guide_v39/Guide Author L e e 142
1.165beginner.guide_v39/E Language Index L 143

1.166beginner.guide_v39/Main Index 154

beginner.guide_v39 1/198

Chapter 1

beginner.guide v39

1.1 beginner.guide

Copyright © 1994, Jason R. Hulance
A Beginner’s Guide to Amiga E
kAhkhkkhkhkhkkhkhkhkkhkkhkrkhkhkrkhkkhkhkhkkhrkhkxkk*x*k
This Guide gives an introduction to the Amiga E programming language
and, to some extent, programming in general.

Part One: Getting Started

Introduction to Amiga E

Understanding a Simple Program
Variables and Expressions

Program Flow Control

Summary
Part Two: The E Language

Format and Layout

Functions

Constants

Types

More About Statements and Expressions
E Built-In Constants Variables and Functions

Modules

beginner.guide_v39

2/198

Exception Handling
Recursion
Part Three: Worked Examples
Introduction to the Examples
Timing Expressions
Argument Parsing
Gadgets IDCMP and Graphics
Recursion Example
Part Four: Appendices
Common Problems
New Features
Syntax Description
Other Information
Indices
E Language Index

Main Index

1.2 beginner.guide_v39/Introduction to Amiga E

Introduction to Amiga E
kAhkAkhkkhhkhkkhkhkhkkhkkhkrkkhkkrkhkhkhkkx*k

To interact with your Amiga you need to speak a language it understands.

Luckily, there is a wide choice of such languages, each of which fits a
particular need. For instance, BASIC (in most of its flavours) is simple
and easy to learn, and so is ideal for beginners. Assembly, on the other
hand, requires a lot of effort and is quite tedious, but can produce the
fastest programs so is generally used by commercial programmers. These
are two extremes and most businesses and colleges use C or
Pascal/Modula-2, which try to strike a balance between simplicity and
speed.

E programs look very much like Pascal or Modula-2 programs, but E is
based more closely on C. Anyone familiar with these languages will easily
learn E, only really needing to get to grips with E’s unique features and
those borrowed from other languages. This guide is aimed at people who
haven’t done much programming and may be too trivial for competent
programmers, who should find the ‘E Reference Manual’ more than adequate.

beginner.guide_v39 3/198

Part One (this part) goes through some of the basics of the E language
and programming in general. Part Two delves deeper into E, covering the
more complex topics and the unique features of E. Part Three goes through
a few example programs, which are a bit longer than the examples in the
other Parts. Finally, Part Four contains the Appendices, which is where
you’ll find some other, miscellaneous information.

A Simple Program

1.3 beginner.guide_v39/A Simple Program

A Simple Program

If you’re still reading you’re probably desperate to do some
programming in E but you don’t know how to start. We’ll therefore jump
straight in the deep end with a small example. You’ll need to know two
things before we start: how to use a text editor and the Shell/CLI.

The code
Compilation

Execution

1.4 beginner.guide_v39/The code

The code

Enter the following lines of code into a text editor and save it as the
file simple.e (taking care to copy each line accurately). (Just type the
characters shown, and at the end of each line press the RETURN or ENTER
key.)

PROC main ()
WriteF ('My first program’)
ENDPROC

Don’t try to do anything different, yet, to the code: the case of the
letters in each word is significant and the funny characters are important.
If you’re a real beginner you might have difficulty finding the '
character. On my GB keyboard it’s on the big key in the top left-hand
corner directly below the ESC key. On a US and most European keyboards
it’s two to the right of the L key, next to the ; key.

beginner.guide_v39

4/198

1.5 beginner.guide_v39/Compilation

Compilation

Once the file is saved (preferably in the RAM disk, since it’s only a
small program), you can use the E compiler to turn it into an executable
program. All you need is the file ec in your C: directory or somewhere
else on your search path (advanced users note: we don’t need the Emodules:
assignment because we aren’t using any modules). Assuming you have this
and you have a Shell/CLI running, enter the following at the prompt after
changing directory to where you saved your new file:

ec simple

If all’s well you should be greeted, briefly, by the E compiler. If
anything went wrong then double-check the contents of the file simple.e,
that your CLI is in the same directory as this file, and that the program
ec is in your C: directory (or on your search path).

1.6 beginner.guide_v39/Execution

Execution

Once everything is working you can run your first program by entering
the following at the CLI prompt:

simple

As a help here’s the complete transcript of the whole compilation and
execution process (the CLI prompt, below, is the bit of text beginning
with 1. and ending in >):

1.Workbench3.0:> cd ram:

1.Ram Disk:> ec simple

Amiga E Compiler/Assembler/Linker v2.1b (c) 91/92/93 S$#%!
lexical analysing

parsing and compiling

no errors

1.Ram Disk:> simple

My first programl.Ram Disk:>

Your display should be something similar if it’s all worked. Notice how
the output from the program runs into the prompt (the last line). We’ll
fix this soon.

beginner.guide_v39

5/198

1.7 beginner.guide_v39/Understanding a Simple Program

Understanding a Simple Program
kAhkAhkkhk kA khkAkhkkhkArkhkdA Ak khkhkhkkhAk Ak kA kA hkkk*k

To understand the example program we need to understand quite a few
things. The observant amongst you will have noticed that all it does 1is

print out a message, and that message was part of a line we wrote in the
program. The first thing to do is see how to change this message.

Changing the Message
Procedures

Parameters

Strings

Style Reuse and Readability

The Simple Program

1.8 beginner.guide_v39/Changing the Message

Changing the Message

Edit the file so that line contains a different message between the two
characters and compile it again using the same procedure as before.
Don’t use any ’ characters except those around the message. If all went

14

well, when you run the program again it should produce a different message.

If something went wrong, compare the contents of your file with the
original and make sure the only difference is the message between the '
characters.

Tinkering with the example

Brief overview

1.9 beginner.guide_v39/Tinkering with the example

Tinkering with the example

Simple tinkering is a good way to learn for yourself so it is
encouraged on these simple examples. Don’t stray too far, though, and if

beginner.guide_v39

6/198

you start getting confused return to the proper example pretty sharpish!

1.10 beginner.guide_v39/Brief overview

Brief overview

We’1ll look in detail at the important parts of the program in the
following sections, but we need first to get a glimpse of the whole
picture. Here’s a brief description of some fundamental concepts:

* Procedures: We defined a procedure called main and used the
(built-in) procedure WriteF. A procedure can be thought of as a
small program with a name.

* Parameters: The message in parentheses after WriteF in our
program is the parameter to WriteF. This is the data which the
procedure should use.

* Strings: The message we passed to WriteF was a series of
characters enclosed in ’ characters. This is known as a string.

1.11 beginner.guide_v39/Procedures

Procedures

As mentioned above, a procedure can be thought of as a small program
with a name. In fact, when an E program is run the procedure called main
is executed. Therefore, if your E program is going to do anything you
must define a main procedure. Other (built-in or user-defined) procedures
may be run (or called) from this procedure (as we did WriteF in the
example). For instance, 1f the procedure fred calls the procedure barney
the code (or mini-program) associated with barney is executed. This may
involve calls to other procedures, and when the execution of this code is
complete the next piece of code in the procedure fred is executed (and
this is generally the next line of the procedure). When the end of the
procedure main has been reached the program has finished. However, lots
can happen between the beginning and end of a procedure, and sometimes the
program may never get to finish. Alternatively, the program may crash,
causing strange things to happen to your computer.

Procedure Definition
Procedure Execution

Extending the example

beginner.guide_v39

7/198

1.12 beginner.guide_v39/Procedure Definition

Procedure Definition

Procedures are defined using the keyword PROC, followed by the new
procedure’s name (in lowercase letters), a description of the parameters
it takes (in parentheses), a series of lines forming the code of the
procedure and then the keyword ENDPROC. Look at the example program again
to identify the various parts. See

The code

1.13 beginner.guide_v39/Procedure Execution

Procedure Execution

Procedures can be called (or executed) from within the code part of

another procedure. You do this by giving its name, followed by some data
in parentheses. Look at the call to WriteF in the example program. See
The code

1.14 Dbeginner.guide_v39/Extending the example

Extending the example

Here’s how we could change the example program to define another
procedure:

PROC main ()
WriteF ('My first program’)
fred()

ENDPROC

PROC fred()
WriteF(’...slightly improved’)
ENDPROC

This may seem complicated, but in fact it’s very simple. All we’ve done
is define a second procedure called fred which is just like the original
program—-—-it outputs a message. We’ve called this procedure in the main
procedure just after the line which outputs the original message.
Therefore, the message in fred is output after this message. Compile the
program as before and run it so you don’t have to take my word for it.

beginner.guide_v39 8/198

1.15 beginner.guide_v39/Parameters

Parameters

Generally we want procedures to work with particular data. In our
example we wanted the WriteF procedure to work on a particular message.
We passed the message as a parameter (or argument) to WriteF by putting it
between the parentheses (the (and) characters) that follow the procedure
name. When we called the fred procedure, however, we did not require it
to use any data so the parentheses were left empty.

When defining a procedure when define how much and what type of data we
want it to work on, and when calling a procedure we give the specific data
it should use. Notice that the procedure fred (like the procedure main)
has empty parentheses in its definition. This means that the procedure
cannot be given any data as parameters when it is called. Before we can
define our own procedure that takes parameters we must learn about
variables. We’ll do this in the next chapter. See

Global and local variables

1.16 beginner.guide v39/Strings

Strings

! characters is known as a string.

A series of characters between two
Almost any character can be used in a string, although the \ and '
characters have a special meaning. For instance, a linefeed is denoted by
the two characters \n. We now know how to stop the message running into

the prompt. Change the program to be:

PROC main ()
WriteF ('My first program\n’)
fred()

ENDPROC

PROC fred()
WriteF (’...slightly improved\n’)
ENDPROC

Compile it as before, and run it. You should notice that the messages now
appear on lines by themselves, and the second message is separated from
the prompt which follows it. We have therefore cured the linefeed problem
we spotted earlier (see

Execution

beginner.guide_v39 9/198

1.17 beginner.guide_v39/Style Reuse and Readability

Style, Reuse and Readability

The example has grown into two procedures, one called main and one
called fred. However, we could get by with only one procedure:

PROC main ()
WriteF ('My first program\n’)
WriteF (' ...slightly improved\n’)
ENDPROC

What we’ve done is replace the call to the procedure fred with the code
it represents (this is called inlining the procedure). 1In fact, almost
all programs can be easily re-written to eliminate all but the main
procedure. However, splitting a program up using procedures normally
results in more readable code. It is also helpful to name your procedures
so that their function is apparent, so our procedure fred should probably
have been named message or something similar. A well-written program in
this style can read just like English (or the any other spoken language).

Another reason for having procedures is to reuse code, rather than
having to write it out every time you use it. Imagine you wanted to print
the same, long message fairly often in your program—-you’d either have to
write it all out every time, or you could write it once in a procedure and
call this procedure when you wanted the message printed. Using a
procedure also has the benefit of having only one copy of the message to
change, should it ever need changing.

1.18 beginner.guide_v39/The Simple Program

The Simple Program

The simple program should now (hopefully) seem simple. The only bit
that hasn’t been explained is the built-in procedure WriteF. E has many
built-in procedures and later we’ll meet some of them in detail. The
first thing we need to do, though, is manipulate data. This is really
what a computer does all the time—--it accepts data from some source
(possibly the user), manipulates it in some way (possibly storing it
somewhere, too) and outputs new data (usually to a screen or printer).
The simple example program did all this, except the first two stages were
rather trivial. You told the computer to execute the compiled program
(this was some user input) and the real data (the message to be printed)
was retrieved from the program. This data was manipulated by passing it
as a parameter to WriteF, which then did some clever stuff to print it on

beginner.guide_v39 10/198

the screen. To do our own manipulation of data we need to learn about
variables and expressions.

1.19 beginner.guide_v39/Variables and Expressions

Variables and Expressions
R R IR I IR I b dh Sb b b Ib b 2h Sb b dh Sh b db Sb b db S

Anybody who’s done any school algebra will probably know what a
variable is—-—-it’s just a named piece of data. In algebra the data is
usually a number, but in E it can be all sorts of things (e.g., a string).
The manipulation of data like the addition of two numbers is known as an
expression. The result of an expression can be used to build bigger
expressions. For instance, 1+2 is an expression, and so is 6-(1+2). The
good thing is you can use variables in place of data in expressions, so if
x represents the number 1 and y represents 5, then the expression y-x
represents the number 4. In the next two sections we’ll look at what kind
of variables you can define and what the different sorts of expressions
are.

Variables

Expressions

1.20 beginner.guide_v39/Variables

Variables

Variables in E can hold many different kinds of data (called types).
However, before a variable can be used it must be defined, and this is
known as declaring the variable. A variable declaration also decides
whether the variable is available for the whole program or just during the
code of a procedure (i.e., whether the variable is global or local).
Finally, the data stored in a variable can be changed using assignments.
The following sections discuss these topics in slightly more detail.

Variable types

Variable declaration
Assignment

Global and local variables

Changing the example

beginner.guide_v39

11/198

1.21 beginner.guide_v39/Variable types

Variables types

In E a variable is a storage place for data (and this storage is part
of the Amiga’s RAM). Different kinds of data may require different
amounts of storage. However, data can be grouped together in types, and
two pieces of data from the same type require the same amount of storage.
Every variable has an associated type and this dictates the maximum amount
of storage it uses. Most commonly, variables in E store data from the
type LONG. This type contains the integers from -2,147,483,648 to
2,147,483,647, so is normally more than sufficient. There are other
types, such as INT and LIST, and more complex things to do with types, but
for now knowing about LONG is enough.

1.22 beginner.guide_v39/Variable declaration

Variable declaration

Variables must be declared before they can be used. They are declared
using the DEF keyword followed by a (comma-separated) list of the names of
the variables to be declared. These variables will all have type LONG
(later we will see how to declare variables with other types). Some
examples will hopefully make things clearer:

DEF x
DEF a, b, c

The first line declares the single variable x, whilst the second declares
the variables a, b and ¢ all in one go.

1.23 beginner.guide_v39/Assignment

Assignment

The data stored by variables can be changed and this is normally done

using assignments. An assignment is formed using the variable’s name and
an expression denoting the new data it is to store. The symbol :=
separates the variable from the expression. For example, the following

code stores the number two in the variable x. The left-hand side of the
:= 1s the name of the variable to be affected (x in this case) and the
right-hand side is an expression denoting the new value (simply the number

beginner.guide_v39

12/198

two in this case).

The following, more complex example uses the value stored in the variable
before the assignment as part of the expression for the new data. The
value of the expression on the right-hand side of the := is the wvalue
stored in the variable x plus one. This value is then stored in x,
over-writing the previous data. (So, the overall effect is that x is
incremented.)

This may be clearer in the next example which does not change the data
stored in x. In fact, this piece of code is Jjust a waste of CPU time,
since all it does 1is look up the value stored in x and store it back there!

1.24 beginner.guide_v39/Global and local variables

Global and local variables (and procedure parameters)

There are two kinds of variable: global and local. Data stored by
global variables can be read and changed by all procedures, but data
stored by local variables can only be accessed by the procedure to which

they are local. Global variables must be declared before the first
procedure definition. Local variables are declared within the procedure
to which they are local (i.e., between the PROC and ENDPROC). For

example, the following code declares a global variable w and local
variables x and vy.

DEF w

PROC main ()
DEF x
X:=2
w:=1
fred ()

ENDPROC

PROC fred()
DEF vy
y:=3
w:=2

ENDPROC

The variable x is local to the procedure main, and y is local to fred.
The procedures main and fred can read and alter the value of the global
variable w, but fred cannot read or alter the value of X (since that
variable is local to main). Similarly, main cannot read or alter y.

The local variables of one procedure are, therefore, completely

beginner.guide_v39

13/198

different to the local variables of another procedure. For this reason
they can share the same names without confusion. So, in the above
example, the local variable y in fred could have been called x and the
program would have done exactly the same thing.

DEF w

PROC main ()
DEF x
X:=2
w:=1
fred()

ENDPROC

PROC fred()
DEF x
X:=3
w:=2

ENDPROC

This works because the x in the assignment in fred can refer only to the
local variable x of fred (the x in main is local to main so cannot be
accessed from fred).

If a local variable for a procedure has the same name as a global
variable then in the rest of the procedure the name refers only to the
local variable. Therefore, the global variable cannot be accessed in the
procedure, and this is called descoping the global wvariable.

The parameters of a procedure are local variables for that procedure.
We’ve seen how to pass values as parameters when a procedure is called
(the use of WriteF in the example), but until now we haven’t been able to
define a procedure which takes parameters. Now we know a bit about
variables we can have a go:

DEF vy

PROC onemore (x)
y:=x+1
ENDPROC

This isn’t a complete program so don’t try to compile it. Basically,
we’ve declared a variable y (which will be of type LONG) and a procedure
onemore. The procedure is defined with a parameter x, and this is just
like a (local) variable declaration. When onemore is called a parameter
must be supplied, and this value is stored in the (local) variable x
before execution of onemore’s code. The code stores the value of x plus
one in the (global) variable y. The following are some examples of
calling onemore:

onemore (120)
onemore (52+34)
onemore (y)

A procedure can be defined to take any number of parameters. Below,
the procedure addthem is defined to take two parameters, a and b, so it
must therefore be called with two parameters. Notice that values stored

beginner.guide_v39 14/198

by the parameter variables (a and b) can be changed within the code of the
procedure.

DEF vy

PROC addthem(a, b)

a:=at2
y:=ax*b
ENDPROC

The following are some examples of calling addthem:

addthem (120, -20)
addthem (52, 34)
addthem(y,vy)

1.25 beginner.guide_v39/Changing the example

Changing the example

Before we change the example we must learn something about WriteF. TWe
already know that the characters \n in a string mean a linefeed. However,
there are several other important combinations of characters in a string,
and some are special to procedures like WriteF. One such combination is
\d, which is easier to describe after we’ve seen the changed example.

PROC main ()
WriteF ('My first program\n’)
fred()

ENDPROC

PROC fred()
WriteF (’/...brought to you by the number \d\n’, 236)
ENDPROC

You might be able to guess what happens, but compile it and try it out
anyway. If everything’s worked you should see that the second message
prints out the number that was passed as the second parameter to WriteF.
That’s what the \d combination does——it marks the place in the string
where the number should be printed. Here’s the output the example should
generate:

My first program
...brought to you by the number 236

Try this next change:
PROC main ()
WriteF (‘My first program\n’)
fred ()
ENDPROC

PROC fred()

beginner.guide_v39

15/198

WriteF (’...the number \d is quite nice\n’, 16)
ENDPROC

This 1s very similar, and just shows that the \d really does mark the
place where the number is printed. Again, here’s the output it should
generate:

My first program
...the number 16 is quite nice

We’ll now try printing two numbers.

PROC main ()
WriteF ('My first program\n’)
fred()

ENDPROC

PROC fred()
WriteF (' ...brought to you by the numbers \d and \d\n’, 16, 236)
ENDPROC

Because we’re printing two numbers we need two lots of \d, and we need to
supply two numbers as parameters in the order in which we want them to be
printed. The number 16 will therefore be printed before the word ‘and’
and before the number 236. Here’s the output:

My first program
...brought to you by the numbers 16 and 236

We can now make a big step forward and pass the numbers as parameters
to the procedure fred. Just look at the differences between this next
example and the previous one.

PROC main ()
WriteF ('My first program\n’)
fred (16, 236)

ENDPROC

PROC fred(a,b)
WriteF (’...brought to you by the numbers \d and \d\n’, a,b)
ENDPROC

This time we pass the (local) variables a and b to WriteF. This is
exactly the same as passing the values they store (which is what the
previous example did), and so the output will be the same. In the next

section we’ll manipulate the variables by doing some arithmetic with a and

b, and get WriteF to print the results.

1.26 beginner.guide_v39/Expressions

Expressions

The E language includes the normal mathematical and logical operators.

beginner.guide_v39 16/198

These operators are combined with values (usually in variables) to give
expressions which yield new values. The following sections discuss this
topic in more detail.

Mathematics
Logic and comparison

Precedence and grouping

1.27 beginner.guide_v39/Mathematics

Mathematics

All the standard mathematical operators are supported in E. You can do
addition, subtraction, multiplication and division. Other functions such
as sine, modulus and square-root can also be used as they are part of the
Amiga system libraries, but we only need to know about simple mathematics
at the moment. The + character is used for addition, - for subtraction, =
for multiplication (it’s the closest you can get to a multiplication sign
on a keyboard without using the letter x), and / for division (be careful
not to confuse the \ wused in strings with / used for division). The
following are examples of expressions:

1+24+3+4
15-5
5x2
330/33
-10+20
3x3+1

Each of these expressions yields ten as its result. The last example is
very carefully written to get the precedence correct (see

Precedence and grouping

) .

1.28 beginner.guide_v39/Logic and comparison

Logic and comparison

Logic lies at the very heart of a computer. They rarely guess what to
do next; instead they rely on hard facts and precise reasoning. Consider
the password protection on most games. The computer must decide whether
you entered the correct number or word before it lets you play the game.

beginner.guide_v39 17/198

When you play the game it’s constantly making decisions: did your laser
hit the alien, have you got any lives left, etc. Logic controls the
operation of a program.

In E, the constants TRUE and FALSE represent the truth values true and
false (respectively), and the operators AND and OR are the standard logic

operators. The comparison operators are = (equal to), > (greater than), <
(less than), >= (greater than or equal to), <= (less than or equal to) and
<> (not equal to). All the following expressions are true:

TRUE

TRUE AND TRUE
TRUE OR FALSE
1=1
2>1
3<>0

And these are all false:

FALSE

TRUE AND FALSE
FALSE OR FALSE
0=2

2<1

(2<1) AND (-1=0)

The last example must use parentheses. We’ll see why in the next section
(it’s to do with precedence, again).

The truth values TRUE and FALSE are actually numbers. This is how the
logic system works in E. TRUE is the number -1 and FALSE is zero. The
logic operators AND and OR expect such numbers as their parameters. 1In
fact, the AND and OR operators are really bit-wise operators (see

Bitwise AND and OR

), so most of the time any non-zero number is taken to
be TRUE. It can sometimes be convenient to rely on this knowledge,
although most of the time it is preferable (and more readable) to use a
slightly more explicit form. Also, these facts can cause a few subtle
problems as we shall see in the next section.

1.29 beginner.guide_v39/Precedence and grouping

Precedence and grouping

At school most of us are taught that multiplications must be done
before additions in a sum. In E it’s different-—-there is no operator
precedence. This means that expressions like 1+3%x3 do not give the
results a mathematician might expect. In fact, 1+3%«3 represents the
number 12 in E. This is because the addition, 143, is done before the
multiplication, since it occurs before the multiplication. If the
multiplication were written before the addition it would be done first

beginner.guide_v39

18/198

(like we would normally expect). Therefore, 3x3+1 represents the number
10 in E and in school mathematics.

To overcome this difference we can use parentheses to group the
expression. If we’d written 1+ (3%3) the result would be 10. This is
because we’ve forced E to do the multiplication first. Although this may
seem troublesome to begin with, it’s actually a lot better than learning a
lot of rules for deciding which operator is done first (in C this can be a
real pain, and you usually end up writing the brackets in just to be
sure!l) .

The logic examples above contained the expression:
(2<1) AND (-1=0)

This expression was false. If we’'d left the parentheses out, E would have
seen it as:

((2<1) AND -1) = 0

Now the number -1 shouldn’t really be used to represent a truth value with
AND, but we do know that TRUE is the number -1, so E will make sense of
this and the E compiler won’t complain. We will soon see how AND and OR
really work (see

Bitwise AND and OR

), but for now we’ll just work out what
E would calculate for this expression:

1. Two is not less than one so 2<1 can be replaced by FALSE.

(FALSE AND -1) = 0
2. TRUE is -1 so we can replace -1 by TRUE.
(FALSE AND TRUE) = 0
3. FALSE AND TRUE is FALSE.
(FALSE) = 0
4. FALSE is really the number zero, so we can replace it with zero.
0=20

5. Zero is equal to zero, so the expression is TRUE.
TRUE
So E calculates the expression to be true. But the original expression

(with parentheses) was false. Bracketing is therefore very important! It
is also very easy to do correctly.

beginner.guide_v39

19/198

1.30 beginner.guide_v39/Program Flow Control

Program Flow Control

R I A b S b S I b e A 2 4

A computer program often needs to repeatedly execute a series of
statements or execute different statements according to the result of some
decision. For example, a program to print all the numbers between one and
a thousand would be very long and tedious to write if each print statement
had to be given individually--it would be much better to use a variable
and repeatedly print its value and increment it. Also, things sometimes
go wrong and a program must decide whether to continue or print an error
message and stop--this part of a program is a typical example of a
conditional block.

Conditional Block

Loops

1.31 beginner.guide_v39/Conditional Block

Conditional Block

There are two kinds of conditional block: IF and SELECT. Examples of
these blocks are given below as fragments of E code (i.e., the examples
are not complete E programs) .

IF x>0

X:=x+1

WriteF (' Increment: x is now \d\n’, x)
ELSEIF x<0

X:=x-1

WriteF (' Decrement: x is now \d\n’, x)
ELSE

WriteF (' Zero: x 1s 0\n’)
ENDIF

In the above IF block, the first part checks if the value of x is greater
than zero, and, if it is, x is incremented and the new value is printed
(with a message saying it was incremented). The program will then skip
the rest of the block, and will execute the statements which follow the
ENDIF. If, however, x it is not greater than zero the ELSEIF part is
checked, so if x is less than zero it will be decremented and printed, and

the rest of the block is skipped. If x is not greater than zero and not
less than zero the statements in the ELSE part are executed, so a message
saying x is zero is printed. The IF conditional is described in more

detail below.

beginner.guide_v39

20/198

IF block

IF expression

SELECT x
CASE O
WriteF ('x 1is zero\n’)
CASE 10
WriteF ('x 1s ten\n’)
CASE -2
WriteF ('x is -2\n’)
DEFAULT
WriteF ('x 1is not zero, ten or -2\n’)
ENDSELECT

The SELECT block is similar to the IF block--it does different things
depending on the value of x. However, x 1s only checked against specific
values, given in the series of CASE statements. If it is not any of these
values the DEFAULT part is executed. The SELECT block is described in
more detail below.

SELECT block

1.32 beginner.guide_v39/IF block

IF block

The IF block has the following form (the bits like expression are
descriptions of the kinds of E code which is allowed at that point--they
are not proper E code):

IF expressionA
StatementsA
ELSEIF expressionB
StatementsB
ELSE
statementsC
ENDIF

This block means:

*» If expressionA is true (i.e., represents TRUE or any non-zero number)
the code denoted by statementsA is executed.

* If expressionA is false (i.e., represents FALSE or zero) and
expressionB is true the statementsB part is executed.

* If both expressionA and expressionB are false the statementsC part is
executed.

There does not need to be an ELSE part but if one is present it must be
the last part (immediately before the ENDIF). Also, there can be any

beginner.guide_v39

21/198

number of ELSEIF parts between the IF and ELSE parts.

An alternative to this vertical form (where each part is on a separate
line) is the horizontal form:

IF expression THEN statementA ELSE statementB

This has the disadvantage of no ELSEIF parts and having to cram everything
onto a single line. Notice the presence of the THEN keyword to separate
the expression and statement. This horizontal form is closely related to
the IF expression, which is described below (see

IF expression

) .

To help make things clearer here are a number of E code fragments which
illustrate the allowable IF blocks:

IF x>0 THEN x:=x+1 ELSE x:=0

IF x>0
x:=x+1

ELSE
x:=0

ENDIF

IF x=0 THEN WriteF (’x is zero\n’)

IF x=0
WriteF ('x 1s zero\n’)
ENDIF

IF x<0
Write (' Negative x\n’)
ELSIF x>2000
Write (' Too big x\n’)
ELSIF (x=2000) OR (x=0)
Write (‘Worrying x\n’)

ENDIF
IF x>0
IF x>2000
WriteF ('Big x\n')
ELSE
WriteF (' OK x\n’)
ENDIF
ELSE
IF x<-800 THEN WriteF (’Small x\n’) ELSE Write (’Negative OK x’)
ENDIF
In the last example there are nested IF blocks (i.e., an IF block within
an IF block). There is no ambiguity in which ELSE or ELSEIF parts belong

to which IF block because the beginning and end of the IF blocks are
clearly marked. For instance, the first ELSE line can only be interpreted
as being part of the innermost IF block.

As a matter of style the conditions on the IF and ELSEIF parts should
not overlap (i.e., at most one of the conditions should be true). If they

beginner.guide_v39

22/198

do, however, the first one will take precedence. Therefore, the following

two fragments of E code do the same thing:

IF x>0

WriteF ('x is bigger than zero\n’)
ELSEIF x>200

WriteF (’x is bigger than 200\n’)
ELSE

WriteF (’x 1s too small\n’)
ENDIF

IF x>0

WriteF (’x is bigger than zero\n’)
ELSE

WriteF ('x 1s too small\n’)
ENDIF

The ELSEIF part of the first fragment checks whether x is greater than 200.

But, if it is, the check in the IF part would have been true (x is
certainly greater than zero if it’s greater than 200), and so only the
code in the IF part is executed. The whole IF block behaves as if the
ELSEIF was not there.

1.33 beginner.guide_v39/IF expression

IF expression

IF is such a commonly used construction that there is also an IF
expression. The IF block is a statement and it controls which lines of
code are executed, whereas the IF expression is an expression and it
controls its own value. For example, the following IF block:

IF x>0
y:=x+1

ELSE
y:=0

ENDIF

can be written more succinctly using an IF expression:
y:=(IF x>0 THEN x+1 ELSE O0)

The parentheses are unnecessary but they help to make the example more
readable. Since the IF block is just choosing between two assignments to
y it isn’t really the lines of code that are different (they are both
assignments), rather it is the wvalues that are assigned to y that are
different. The IF expression makes this similarity very clear. It
chooses the value to be assigned in just the same way that the IF block
choose the assignment.

As you can see, IF expressions are written like the horizontal form of
the IF block. However, there must be an ELSE part and there can be no

beginner.guide_v39 23/198

ELSEIF parts. This means that the expression will always have a value,
and it isn’t cluttered with lots of cases.

Don’t worry too much about IF expressions, since there are only useful
in a handful of cases and can always be rewritten as a more wordy IF block.
Having said that they are very elegant and a lot more readable than the
equivalent IF block.

1.34 beginner.guide_v39/SELECT block

SELECT block

The SELECT block has the following form:

SELECT variable
CASE expressionA
statementsA
CASE expressionB
StatementsB

DEFAULT
statementsC
ENDSELECT

The value of the selection variable (denoted by variable in the SELECT
part) is compared with the result of the expressions in each of the CASE
parts in turn. If there’s a match, the statements in the (first) matching
CASE part are executed. There can be any number of CASE parts between the
SELECT and DEFAULT parts. If there are no matches, the statements in the
DEFAULT part are executed. There does not need to be an DEFAULT part but
if one is present it must be the last part (immediately before the
ENDSELECT) .

It should be clear that SELECT blocks can be rewritten as IF blocks,
with the checks on the IF and ELSEIF parts being equality checks. For
example, the following code fragments are equivalent:

SELECT x
CASE 22
WriteF ('x 1s 22\n’)
CASE (y+z)/2
WriteF ('x is (y+x)/2\n’")
DEFAULT
WriteF ('x isn’t anything significant\n’)
ENDSELECT

IF x=22
WriteF ('x is 22\n’)
ELSEIF x=(y+z)/2
WriteF ('x is (y+x)/2\n’")
ELSE
WriteF ('x isn’t anything significant\n’)
ENDIF

beginner.guide_v39 24/198

Notice that the IF and ELSEIF parts come from the CASE parts, the ELSE
part comes from the DEFAULT part, and the order of the parts is preserved.
The advantage of the SELECT block is that it’s much easier to see that the
value of x is being tested all the time, and also we don’t have to keep
writing x= in the checks.

1.35 beginner.guide_v39/Loops

Loops

Loops are all about making a program execute a series of statements
over and over again. Probably the simplest loop to understand is the FOR
loop. There are other kinds of loops, but they are easier to understand
once we know how to use a FOR loop.

FOR loop
WHILE loop

REPEAT. .UNTIL loop

1.36 beginner.guide_v39/FOR loop

FOR loop

If you want to write a program to print the numbers one to 100 you can
either type each number and wear out your fingers, or you can use a single
variable and a small FOR loop. Try compiling this E program (the space
after the \d is needed to separate the printed numbers) :

PROC main ()
DEF x
FOR x:=1 TO 100
WriteF ('\d 7, x)
ENDFOR
WriteF ("\n’)
ENDPROC

When you run this you’ll get all the numbers from one to 100 printed, just
like we wanted. It works by using the (local) variable x to hold the
number to be printed. The FOR loop starts off by setting the value of x

to one (the bit that looks like an assignment). Then the statements
between the FOR and ENDFOR lines are executed (so the value of x gets
printed). When the program reaches the ENDFOR it increments x and checks
to see if it is bigger than 100 (the limit we set with the TO part). If

it is, the loop is finished and the statements after the ENDFOR are

beginner.guide_v39 25/198

executed. If, however, it wasn’t bigger than 100, the statements between
the FOR and ENDFOR lines are executed all over again, and this time x is
one bigger since it has been incremented. 1In fact, this program does
exactly the same as the following program (the ... is not E code--it
stands for the 97 other WriteF statements):

PROC main ()
WriteF('\d ', 1)
WriteF ('\d ', 2)
WriteF ("\d ", 100)
WriteF (\n’)

ENDPROC

The general form of the FOR loop is as follows:

FOR var := expressionA TO expressionB STEP number
statements
ENDFOR

The var bit stands for the loop variable (in the example above this was x).
The expressionA bit gives the start value for the loop variable and the
expressionB bit gives the last allowable value for it. The STEP part
allows you to specify the value (given by number) which is added to the
loop variable on each loop. Unlike the values given for the start and end
(which can be arbitrary expressions), the STEP value must be an explicit
number, i.e., a constant (see

Constants

). The STEP value defaults to one
if the STEP part is omitted (as in our example). Negative STEP values are
allowed, but in this case the check used at the end of each loop is
whether the loop variable is less than the value in the TO part. Zero is

not allowed as the STEP value.
As with the IF block there is a horizontal form of a FOR loop:

FOR var := expA TO expB STEP expC DO statement

1.37 beginner.guide_v39/WHILE loop

WHILE loop

The FOR loop used a loop variable and checked whether that variable had
gone past its limit. A WHILE loop allows you to specify your own loop
check. For instance, this program does the same as the program in the
previous section:

PROC main ()
DEF x
x:=1
WHILE x<=100
WriteF ('\d ', x)

beginner.guide_v39

26/198

x:=x+1
ENDWHILE
WriteF (' \n’)
ENDPROC

We’ve replaced the FOR loop with initialisation of x and a WHILE loop with
an extra statement to increment x. We can now see the inner workings of
the FOR loop and, in fact, this is exactly how the FOR loop works.

It is important to know that our check, x<=100, is done before the loop
statements are executed. This means that the loop statements might not
even be executed once. For instance, if we’d made the check x>=100 it
would be false at the beginning of the loop (since x is initialised to one
in the assignment before the loop). Therefore, the loop would have
terminated immediately and execution would pass straight to the statements
after the ENDWHILE.

Here’s a more complicated example:

PROC main ()
DEF x,y
x:=1
y:i=2
WHILE (x<10) AND (y<10)
WriteF('x is \d and y is \d\n’, x, vy)
X:=xX+2
yi=y+2
ENDWHILE
ENDPROC

We’ve used two (local) variables this time. As soon as one of them is ten
or more the loop is terminated. A bit of inspection of the code reveals
that x is initialised to one, and keeps having two added to it. It will,
therefore, always be an odd number. Similarly, y will always be even.

The WHILE check shows that it won’t print any numbers which are greater
than or equal to ten. From this and the fact that x starts at one and y
at two we can decide that the last pair of numbers will be seven and eight.
Run the program to confirm this. It should produce the following output:

x is 1 and y is 2
x is 3 and y is 4
x is 5 and y is 6
x is 7 and y is 8

Like the FOR loop, there is a horizontal form of the WHILE loop:
WHILE expression DO statement

Loop termination is always a big problem. FOR loops are guaranteed to
eventually reach their limit (if you don’t mess with the loop variable,
that is). However, WHILE loops (and all other loops) may go on forever
and never terminate. For example, if the loop check were 1<2 it would
always be true and nothing the loop could do would prevent it being true!
You must therefore take care that you make sure your loops terminate in
some way if you want to program to finish. There is a sneaky way of
terminating loops using the JUMP statement, but we’ll ignore that for now.

beginner.guide_v39

27/198

1.38 beginner.guide_v39/REPEAT..UNTIL loop

REPEAT..UNTIL loop

A REPEAT..UNTIL loop is very similar to a WHILE loop. The only
difference is where you specify the loop check, and when and how the check
is performed. To illustrate this, here’s the program from the previous
two sections rewritten using a REPEAT..UNTIL loop (try to spot the subtle
differences):

PROC main ()
DEF x
x:=1
REPEAT
WriteF ('\d ', x)
X:=x+1
UNTIL x>100
WriteF ('\n’)
ENDPROC

Just as in the WHILE loop version we’ve got an initialisation of x and an
extra statement in the loop to increment x. However, this time the loop
check is specified at the end of the loop (in the UNTIL part), and the
check is only performed at the end of each loop. This difference means
that the code in a REPEAT..UNTIL loop will be executed at least once,
whereas the code in a WHILE loop may never be executed. Also, the logical
sense of the check follows the English: a REPEAT..UNTIL loop executes
until the check is true, whereas the WHILE loop executes while the

check is true. Therefore, the REPEAT..UNTIL loop executes while the check
is false! This may seem confusing at first, but just remember to read the
code as if it were English and you’ll get the correct interpretation.

1.39 beginner.guide_v39/Summary

Summary
* ok Kk k ok kK

This is the end of Part One, which was hopefully enough to get you
started. If you’ve grasped the main concepts you are good position to
attack Part Two, which covers the E language in more detail.

This is probably a good time to look at the different parts of one of
the examples from the previous sections, since we’ve now used quite a bit
of E. The following examination uses the WHILE loop example. Just to make
things easier to follow, each line has been numbered (don’t try to compile
it with the line numbers on!).

1. PROC main ()

beginner.guide_v39 28/198

DEF x,y

x:=1

y:i=2

WHILE (x<10) AND (y<10)
WriteF('x is \d and y is \d\n’, x, v)
X:1=x+2
yi=y+2

ENDWHILE

ENDPROC

O W O ~Jo U b W

Hopefully, you should be able to recognise all the features listed in the
table below. If you don’t then you might need to go back over the
previous chapters, or find a much better programming guide than this!

Line(s) Observation
110 The procedure definition.
1 The declaration of the procedure main, with no
parameters.
2 The declaration of local variables x and vy.
3, 4 Initialisation of x and y using assignment
sStatements.
5-9 The WHILE loop.
5 The loop check for the WHILE loop using the

logical operator AND, the comparison operator
<, and parentheses to group the expression.

6 The call to the (built-in) procedure WriteF
using parameters. Notice the string, the place
holders for numbers, \d, and the linefeed,

\n.
7, 8 Assignments to x and y, adding two to

their values.
9 The marker for the end of the WHILE loop.

10 The marker for the end of the procedure.

1.40 beginner.guide_v39/Format and Layout

Format and Layout
kAhkkhkkhkkhkhkkhkkhkkkkkkk*xk

In this chapter we’ll look at the rules which govern the format and

layout of E code. In the previous Part we saw examples of E code that
were quite nicely indented and the structure of the program was easily
visible. This was just a convention and the E language does not constrain

you to write code in this way. However, there are certain rules that must

beginner.guide_v39 29/198

be followed. (This chapter refers to some concepts and parts of the E
language which were not covered in Part One. Don’t let this put you
off-—-those things will be dealt with in later chapters, and it’s maybe a
good idea to read this chapter again when they have been.)

Identifiers
Statements
Spacing and Separators

Comments

1.41 beginner.guide_v39/ldentifiers

Identifiers

An identifier is a word which the compiler must interpret rather than
treating literally. For instance, a variable is an identifier, as is a
keyword (e.g., IF), but anything in a string is not (e.g., fred in ’fred
and wilma’ is not an identifier). Identifiers can be made up of upper- or
lower—-case letters, numbers and underscores (the _ character). There are
only two constraints:

1. The first character cannot be a number (this would cause confusion
with numeric constants).

2. The case of the first few characters of identifiers is significant.

For keywords (e.g., ENDPROC), constants (e.g., TRUE) and assembly
mnemonics (e.g., MOVE.L) the first two characters must both be uppercase.
For E built-in or Amiga system procedures/functions the first character
must be uppercase and the second must be lowercase. For all other
identifiers (i.e., local, global and procedure parameter variables, object
names and element names, procedure names and code labels) the first
character must be lowercase.

Apart from these constraints you are free to write identifiers how you

like, although it’s arguably more tasteful to use all lowercase for
variables and all uppercase for keywords and constants.

1.42 beginner.guide_v39/Statements

Statements

A statement is normally a single line of an instruction to the computer.

beginner.guide_v39

30/198

Each statement normally occupies a single line. If a procedure is thought
of as a paragraph then a statement is a sentence. Variables, expressions
and keywords are the words which make up the sentence.

So far in our examples we have met only two kinds of statement: the
single line statement and the multi-line statement. The assignments we
have seen were single line statements, and the vertical form of the IF
block is a multi-line statement. The horizontal form of the IF block was
actually the single line statement form of the IF block. Notice that
statements can be built up from other statements, as is the case for IF
blocks. The code parts between the IF, ELSEIF, ELSE and ENDIF lines are
sequences of statements.

Single line statements can often be very short, and you may be able to
fit several of them onto an single line without the line getting too long.
To do this in E you use a semi-colon (the ; character) to separate each
statement on the line. For example, the following code fragments are
equivalent:

fred(y, z)

yi=XxX
X:i=z+1

fred(y,z); v:=x; x:=z+1

On the other hand you may want to split a long statement over several
lines. This is a bit more tricky because the compiler needs to see that
you haven’t finished the statement when it gets to the end of a line.
Therefore you can only break a statement in certain places. The most
common place is after a comma that is part of the statement (like in a
procedure call with more than one paramter), but you can also split a line
after most binary operators. The following examples are rather silly but
show some allowable line breaking places.

fred(a, b, c,
d, e, £f)
X=X+
v+
z

The complete list of binary operators after which you can split the line
is:

+ - * /
= > < <> >= <=
AND OR BUT

Strings may also get a bit long. You can split them over several lines
by breaking them into several separate strings and using + between them.
If a line ends with a + and the previous thing on the line was a string
then the E compiler takes the next string to be a continuation. The
following calls to WriteF print the same thing:

WriteF (' This long string can be broken over several lines.\n’)

WriteF (' This long string ' +
"can be broken over several lines.\n’)

beginner.guide_v39

31/198

WriteF (' This long’ +
" string can be ' +
"broken over several ' +
"lines.\n’)

1.43 beginner.guide_v39/Spacing and Separators

Spacing and Separators

The examples we’ve seen so far used a rigid indentation convention
which was intended to illuminate the structure of the program. This was
just a convention, and the E language places no constraints on the amount
of whitespace (spaces, tabs and linefeeds) you place between statements.
However, within statements you must supply enough spacing to make the
statement readable. This generally means that you must put whitespace
between adjacent identifiers which start or end with a letter, number or

underscore (so that the compiler does not think it’s one big identifier!).

In practice this means you should put a space after a keyword if it might
run into a variable or procedure name. Most other times (like in
expressions) identifiers are separated by non-identifier characters (a
comma, parenthesis or other symbol).

1.44 beginner.guide_v39/Comments

Comments

A comment is something that the E compiler ignores and is only there to

help the reader. Remember that one day in the future you may be the
reader, and it may be quite hard to decipher your own code without a few
decent comments! Comments are therefore pretty important.

You can write comments anywhere you can write whitespace that isn’t
part of a string. The start of a comment is marked by /x and the end by
x/, so you must be careful not to write /* or =/ as part of the
comment text, unless these delimit a nested comment. In practice a
comment is best put on a line by itself or after the end of the code on a
line.

/+x This line is a comment =/

x:=1 /% This line contains an assignment then a comment =/
/+ y:=2 /* This whole line is a comment with a nested comment x/x/

1.45 beginner.guide_v39/Functions

beginner.guide_v39 32/198

Functions
XKk kKKK KKKk
A function is a procedure which returns a value. This value can be any
expression so it may depend on the parameters with which the function was
called. For instance, the addition operator + can be thought of as a

function which returns the sum of its two parameters.

Procedures as Functions

One-Line Functions

1.46 beginner.guide_v39/Procedures as Functions

Procedures as Functions

We can define our own addition function, add, in a very similar way to
the definition of a procedure. (The only difference is that a function
explicitly returns a value.)

PROC main ()
DEF sum
sum:=12+79
WriteF ('Using +, sum is \d\n’, sum)
sum:=add (12, 79)
WriteF ('Using add, sum is \d\n’, sum)
ENDPROC

PROC add(x, vy)
DEF s
s:=x+y

ENDPROC s

This should generate the following output:

Using +, sum is 91
Using add, sum is 91

In the procedure add the value s is returned using the ENDPROC label. The
value returned from add can be used in expressions, just like any other
value. You do this by writing the procedure call where you want the wvalue
to be. 1In the above example we wanted the value to be assigned to sum so
we wrote the call to add on the right-hand side of the assignment. Notice
the similarities between the uses of + and add. In general, add(a,b) can
be used in exactly the same places that atb can (more precisely, it can be
used anywhere (at+b) can be used).

The RETURN keyword can also be used to return values from a procedure.
If the ENDPROC method is used then the value is returned when the
procedure reaches the end of its code. However, if the RETURN method is

beginner.guide_v39

33/198

used the value is returned immediately at that point and no more of the
procedure’s code is executed. Here’s the same example using RETURN:

PROC add (x, Vy)
DEF s
s:i=x+y
RETURN s

ENDPROC

The only difference is that you can write RETURN anywhere in the code part
of a procedure and it finishes the execution of the procedure at that
point (rather than execution finishing when it reaches the end of the
code). In fact, you can use RETURN in the main procedure to prematurely
finish the execution of a program.

Here’s a slightly more complicated use of RETURN:

PROC limitedadd(x,yVy)
IF x>10000
RETURN 10000
ELSEIF x<-10000
RETURN -10000
ELSE
RETURN x+y
ENDIF
x:=1
IF x=1 THEN RETURN 9999 ELSE RETURN -9999
ENDPROC

This function checks to see if x is greater than 10,000 or less than
-10,000, and if it is a limited value is returned (which is generally not
the correct sum!). If x is between -10,000 and 10,000 the correct answer
is returned. The lines after the first IF block will never get executed
because execution will have finished at one of the RETURN lines. Those
lines are therefore Jjust a waste of compiler time and can safely be
omitted.

If no value is given with the ENDPROC or RETURN keyword then zero is
returned. Therefore, all procedures are actually functions (and the terms
procedure and function will tend to be used interchangeably). So, what
happens to the value when you write a procedure call on a line by itself,
not in an expression? Well, as we will see, the value is simply discarded
(see

Turning an Expression into a Statement
). This is what happened in
the previous examples when we called the procedures fred and WriteF.

1.47 beginner.guide_v39/One-Line Functions

One-Line Functions

Just as the IF block and FOR loop have horizontal, single line forms,

beginner.guide_v39

34/198

so does a procedure definition. The general form is:

PROC name (argl, arg2, ...) RETURN expression
At first sight this might seem pretty unusable, but it is useful for very
simple functions and our add function in the previous section is a good
example. If you look closely at the original definition you’ll see that
the local variable s wasn’t really needed. Here’s the one-line definition

of add:

PROC add(x,y) RETURN x+y

1.48 beginner.guide_v39/Constants

Constants
* ok kkkhkkk kK
A constant is a value that does not change. A number like 121 is a
good example of a constant--its value is always 121. We’ve already met
another kind of constant: string constants (see
Strings

). As you can
doubtless tell, constants are pretty important things.

Numeric Constants

String Constants Special Character Sequences
Named Constants

Enumerations

Sets

1.49 beginner.guide_v39/Numeric Constants

Numeric Constants

We’ve met a lot of numbers in the previous examples. Technically
speaking, these were numeric constants (constant because they don’t change
value like a variable might). They were all decimal numbers, but you can
use hexadecimal and binary numbers as well. There’s also a way of
specifying a number using characters. To specify a hexadecimal number you
use a $ before the digits (and after the optional minus sign — to
represent a negative value). To specify a binary number you use a %
instead.

beginner.guide_v39

35/198

Specifying numbers using characters is more complicated, because the
base of this system is 256 (the base of decimal is ten, that of
hexadecimal is 16 and that of binary is two). The digits are enclosed in
double-quotes (the " character), and there can be at most four digits.
Each digit is a character representing its ASCII value. Therefore, the
character A represents 65 and the character 0 (zero) represents 48. This
upshot of this is that character A has ASCII value "A" in E, and "Oz"
represents ("0" % 256) + "z" = (48 x 256) + 122 = 12,410. However, you
probably don’t need to worry about anything other than the single
character case, which gives you the ASCII value of the character.

The following table shows the decimal value of several numeric
constants. Notice that you can use upper- or lower-case letters for the
hexadecimal constants. Obviously the case of characters is significant
for character numbers.

Number Decimal value

21 21
-143 -143
S$la 26
-$B1 =177
%1110 14
-%1010 -10
"z" 122
"Je" 19,045
—-"A" -65

1.50 beginner.guide_v39/String Constants Special Character Sequences

String Constants: Special Character Sequences

We have seen that in a string the character sequence \n means a

linefeed (see

Strings

). There are several other similar such special
character sequences which represent useful characters that can’t be typed
in a string. The following table shows all these sequences. Note that
there are some other similar sequences which are used to control
formatting with built-in procedures like WriteF. These are listed where
WriteF and similar procedures are described (see

Input and output functions

) .

Sequence Meaning
\O A null (ASCII zero)
\a An apostrophe
\b A carriage return (ASCII 13)
\e An escape (ASCII 27)
\n A linefeed (ASCII 10)

\t A tab (ASCII 9)

beginner.guide_v39

36/198

\ A backslash \

1.51 beginner.guide_v39/Named Constants

Named Constants

It is often nice to be able to give names to certain constants. For
instance, as we saw earlier, the truth value TRUE actually represents the
value -1, and FALSE represents zero (see

Logic and comparison

). These are
our first examples of named constants. To define your own you use the
CONST keyword as follows:

CONST ONE=1, LINEFEED=10, BIG_NUM=999999

This has defined the constant ONE to represent one, LINEFEED ten and
BIG_NUM 999,999. Named constants must begin with two uppercase letters,
as mentioned before (see

Identifiers

) .

You can use previously defined constants to give the value of a new
constant, but in this case the definitions must occur on different CONST
lines.

CONST ZERO=0
CONST ONE=ZERO+1
CONST TWO=ONE+1

The expression used to define the value of a constant can use only simple
operators (no function calls) and constants.

1.52 beginner.guide_v39/Enumerations

Enumerations

Often you want to define a whole lot of constants and you just want

them all to have a different value so you can tell them apart easily. For

instance, if you wanted to define some constants to represent some famous
cities and you only needed to know how to distinguish one from another
then you could use an enumeration like this:

ENUM LONDON, MOSCOW, NEW_YORK, PARIS, ROME, TOKYO

The ENUM keyword begins the definitions (like the CONST keyword does for

beginner.guide_v39 37/198

an ordinary constant definition). The actual values of the constants
start at zero and stretch up to five. 1In fact, this is exactly the same
as writing:

CONST LONDON=0, MOSCOW=1, NEW_YORK=2, PARIS=3, ROME=4, TOKYO=5

The enumeration does not have to start at zero, though. You can change
the starting value at any point by specifying a value for an enumerated
constant. For example, the following constant definitions are equivalent:

ENUM APPLE, ORANGE, CAT=55, DOG, GOLDFISH, FRED=-2,
BARNEY, WILMA, BETTY

CONST APPLE=0, ORANGE=1, CAT=55, DOG=56, GOLDFISH=57,
FRED=-2, BARNEY=-1, WILMA=0, BETTY=1

1.53 beginner.guide_v39/Sets

Sets

Yet another kind of constant definition is the set definition. This
useful for defining flag sets, i.e., a number of options each of which can
be on or off. The definition is like a simple enumeration, but using the
SET keyword and this time the values start at one and increase as powers
of two (so the next value is two, the next is four, the next eight, and so
on). Therefore, the following definitions are equivalent:

SET ENGLISH, FRENCH, GERMAN, JAPANESE, RUSSIAN
CONST ENGLISH=1, FRENCH=2, GERMAN=4, JAPANESE=8, RUSSIAN=16

However, the significance of the wvalues it is best shown by using binary
constants:

CONST ENGLISH=%00001, FRENCH=%00010, GERMAN=%00100,
JAPANESE=%01000, RUSSIAN=%10000

If a person speaks just English then we can use the constant ENGLISH. If
they also spoke Japanese then to represent this with a single value we’d
normally need a new constant (something like ENG_JAP). 1In fact, we’d
probably need a constant for each combination of languages a person might
know. However, with the set definition we can OR the ENGLISH and JAPANESE
values together to get a new value, %01001, and this represents a set
containing both ENGLISH and JAPANESE. On the other hand, to find out if
someone speaks French we would AND the value for the languages they know

with %00010 (or the constant FRENCH) . (As you might have guessed, AND and
OR are really bit-wise operators, not simply logical operators. See

Bitwise AND and OR
.)

Consider this program fragment:

beginner.guide_v39

38/198

speak:=GERMAN OR ENGLISH OR RUSSIAN /% Speak any of these x/
IF speak AND JAPANESE
/+ Can speak Japanese x/
WriteF (' Can speak Japenese\n’)
ELSE
/* Can’t speak Japanese x/
WriteF (' Can\at speak Japenese\n’)
ENDIF
IF speak AND (GERMAN OR FRENCH)
/+ Can speak German or French x/
WriteF (' Can speak both German and French\n’)
ELSE
/+ Can’t speak German or French «*/
WriteF (' Can\at speak neither German nor French\n’)
ENDIF

The assignment sets speak to show that the person can speak German,
English or Russian. The first IF block tests whether the person can speak
Japanese, and the second tests whether they can speak German or French.

When using sets be careful you don’t get tempted to add values instead
of OR-ing them. Adding two different constants from the same set is the

same as OR-ing them, but adding a constant to itself isn’t. This is not
the only time addition doesn’t give the same answer, but it’s the most
obvious. If you to stick to using OR you won’t have a problem.

1.54 beginner.guide_v39/Types

Types
* Kk Kk kK

We’ve already met the LONG type and found that this was the normal type
for variables (see
Variable types
). The types INT and LIST were also
mentioned. Learning how to use types in an effective and readable way is

very important. The type of a variable (as well as its name) can give
clues to the reader about how or for what it is used. There are also more
fundamental reasons for needing types, e.g., to logically group data using

objects (see
OBJECT Type
) .

This is a very large chapter and you might like to take it slowly. One
of the most important things to get to grips with is pointers.

Concentrate on trying to understand these as they play a large part in any
kind of system programming.

LONG Type

PTR Type

beginner.guide_v39

39/198

ARRAY Type
OBJECT Type
LIST and STRING Types

Linked Lists

1.55 beginner.guide_v39/LONG Type

LONG Type

The LONG type is the most important type because it is the default type

and by far the most common type. It can be used to store a variety of
data, including memory addresses, as we shall see.

Default type

Memory addresses

1.56 beginner.guide_v39/Default type

Default type

LONG is the default type of variables. It is a 32-bit type, meaning
that 32-bits of memory (RAM) are used to store the data for each variable
of this type and the data can take (integer) wvalues in the range
-2,147,483,648 to 2,147,483,647. Variables can explicitly be declared as
LONG:

DEF x:LONG, vy

PROC fred(p:LONG, g, r:LONG)
DEF zed:LONG
statements

ENDPROC

The global variable x, procedure parameters p and r, and local variable
zed have all been declared to be LONG values. The declarations are

very similar to the kinds we’ve seen before, except that the variables
have :LONG after their name in the declaration. This is the way the type

of a variable is given. ©Note that the global variable y and the procedure

parameter g are also LONG, since they do not have a type specified and
LONG is the default type for variables.

beginner.guide_v39 40/198

1.57 beginner.guide_v39/Memory addresses

Memory addresses

There’s a very good reason why LONG is the normal type. A 32-bit

(integer) value can be used as a memory address. Therefore we can store
the address (or location) of data in a variable (the variable is then
called a pointer). The variable would then not contain the value of the
data but a way of finding the data. Once the data location is known the
data can be read or even altered! The next section covers pointers and
addresses in more detail. (see

PTR Type

.)

1.58 beginner.guide_v39/PTR Type

PTR Type

The PTR type is used to hold memory addresses. Variables which have a
PTR type are called pointers (since they store memory addresses, as
mentioned in the previous section). This section describes, in detail,
addresses, pointers and the PTR type.

Addresses

Pointers

Indirect types

Finding addresses (making pointers)
Extracting data (dereferencing pointers)

Procedure parameters

1.59 beginner.guide_v39/Addresses

Addresses

To understand memory addresses, a good analogy is to think of memory as
a road or street, each memory location as a post-box on a house, and each
piece of data as a letter. If you were a postman you would need to know
where to put your letters, and this information is given by the address of
the post-box. As time goes by, each post-box is filled with different

beginner.guide_v39 41/198

letters. This is like the wvalue in a memory location (or variable)
changing. To change the letters stored in your post-box, you tell your
friends your address and they can send letters in and fill it. This is

like letting some program change your data by giving it the address of the
data.

The next two diagrams illustrate this analogy. A letter contains an
address which points to a particular house (or lot of mail) on a street.

to—— +
Letter
Address+————x
o + \
\
\
Fm—————— + ===\t + Fm—————— +
House
Street: [+—————— +] |+ +| | +————— + ... | + |
[l Mail || || Mail || || Mail || [l Mail ||
t========4 t========4 t========+ t========+

A pointer contains an address which points to a variable (or data) in
memory .

Fo—————— +
|Pointer|
| = |
|Address+————x
fom + \
\
\
Fm————— + ==\t + e +
|Variable| |Variable| |Variable| |[Variable|
Memory: [+—————— +| |+ +| |+ +] .. A= +
|| Data || || Data || || Data || || Data |
t========+ {========4 f========+ t========1

1.60 beginner.guide_v39/Pointers

Pointers

Variables which contain memory addresses are called pointers. As we
saw in the previous section, we can store memory addresses in LONG
variables. However, we then don’t know the type of the data stored at
those addresses. If it is important (or useful) to know this then the PTR
type (or, more accurately, one of the many PTR types) should be used.

DEF p:PTR TO LONG, i:PTR TO INT,
cptr:PTR TO CHAR, gptr:PTR TO gadget

The values stored in each of p, cptr, i and gptr are LONG since they are
memory addresses. However, the data at the address stored in p is taken

beginner.guide_v39 42/198

to be LONG (a 32-bit value), that at cptr is CHAR (an 8-bit wvalue), that
at 1 is INT (a 1l6-bit wvalue), and that at gptr is gadget, which is an
object (see

OBJECT Type

) .

1.61 beginner.guide_v39/Indirect types

Indirect types

In the previous example we saw INT and CHAR used as the destination
types of pointers, and these are the 16- and 8-bit equivalents
(respectively) of the LONG type. However, unlike LONG these types cannot
be used directly to declare global or local variables, or procedure
parameters. They can only be used in constructing types (for instance
with PTR TO). The following declarations are therefore illegal, and it
might be nice to try compiling a little program with such a declaration,
just to see the error message the E compiler gives.

/* This program fragment contains illegal declarations =/
DEF c:CHAR, 1i:INT

/+ This program fragment contains illegal declarations =x/
PROC fred(a:INT, b:CHAR)

DEF x:INT

statements
ENDPROC

This is not much of a limitation because you can store INT or CHAR
values in LONG variables if you really need to. However, it does mean
there’s a nice, simple rule: every direct value in E is a 32-bit quantity,
either a LONG or a pointer. 1In fact, LONG is actually short-hand for PTR
TO CHAR, so you can use LONG values like they were actually PTR TO CHAR
values.

1.62 beginner.guide_v39/Finding addresses (making pointers)

Finding addresses (making pointers)

If a program knows the address of a variable it can directly read or
alter the value stored in the variable. To obtain the address of a simple
variable you use { and } around the variable name. The address of
non-simple variables (e.g., objects and arrays) can be found much more
easily (see the appropriate section), and in fact you will very rarely
need to use {var }. However, if you understand how to explicitly make
pointers with {var } and use the pointers to get to data, then you’ll
understand the way pointers are used for the non-simple types much more

beginner.guide_v39

43/198

quickly.

Addresses can be stored in a variable, passed to a procedure or
whatever (they’re just 32-bit values). Try out the following program:

DEF x

PROC main ()
fred(2)
ENDPROC

PROC fred(y)
DEF 2z
WriteF (’x 1s at address \d\n’, {x}
WriteF (‘y is at address \d\n’, {y}
WriteF (‘z is at address \d\n’, {z}
WriteF (' fred is at address \d\n’,
ENDPROC

—_— — ~—

fred})

Notice that you can also find the address of a procedure using { and }.
This is is the memory location of the code the procedure represents.
Here’s the output from one execution of this program:

X 1s at address 3758280
y 1s at address 3758264
z 1s at address 3758252
fred is at address 3732878

This is an interesting program to run several times under different
circumstances. You should see that sometimes the numbers for the
addresses change. Running the program when another is multi-tasking (and
eating memory) should produce the best changes, whereas running it
consecutively (in one CLI) should produce the smallest (if any) changes.
This gives you a glimpse at the complex memory handling of the Amiga and
the E compiler.

1.63 beginner.guide_v39/Extracting data (dereferencing pointers)

Extracting data (dereferencing pointers)

If you have an address stored in a variable (i.e., a pointer) you can
extract the data using the * operator. This act of extracting data via a
pointer is called dereferencing the pointer. This operator should only
really be used when {var } has been used to obtain an address. To this
end, LONG values are read and written when dereferencing pointers in this
way. For pointers to non-simple types (e.g., objects and arrays),
dereferencing is achieved in much more readable ways (see the appropriate
section for details), and this operator is not used. 1In fact, “var is
seldom used in programs, but is useful for explaining how pointers work,
especially in conjunction with {var }.

Using pointers can remove the scope restriction on local variables,
i.e., they can be altered from outside the procedure for which they are

beginner.guide_v39 44/198

local. Whilst this kind of use is not generally advised, it makes for a
good example which shows the power of pointers. For example, the
following program changes the value of the local variable x for the
procedure fred from within the procedure barney.

PROC main ()
fred()
ENDPROC

PROC fred()
DEF x, p:PTR TO LONG
x:=33
p:={x}
barney (p)
WriteF ('x is now \d\n’, x)
ENDPROC

PROC barney (ptr:PTR TO LONG)
DEF val
val:="ptr
“ptr:=val-6

ENDPROC

Here’s what you can expect it to generate as output:

X 1is now 27

Notice that the * operator (i.e., dereferencing) is quite versatile. 1In
the first assignment of the procedure barney it is used (with the pointer
ptr) to get the value stored in the local variable x, and in the second it
is used to change this wvariable’s value. 1In either case, dereferencing
makes the pointer behave exactly as if you’d written the variable for
which it is a pointer. To emphasise this, we can remove the barney
procedure, like we did above (see

Style Reuse and Readability

)t

PROC main ()
fred()
ENDPROC

PROC fred()

DEF x, p:PTR TO LONG, val

x:=33

p:={x}

val:=x

X:=val-6

WriteF ('x is now \d\n’, x)
ENDPROC

Everywhere the barney procedure used "ptr we’ve written x (because we are
now in the procedure for which x is local). We’ve also eliminated the ptr
variable (the parameter to the barney procedure), since it was only used
with the " operator.

To make things clear the fred and barney example is deliberately
‘wordy’ . The val and p variables are unnecessary, and the pointer types

beginner.guide_v39

45/198

could be abbreviated to LONG or even omitted, for the reasons outlined
above (see

LONG Type

). This is the compact form of the example:

PROC main ()
fred()
ENDPROC

PROC fred()

DEF x

x:=33

barney ({x})

WriteF (’x is now \d\n’, x)
ENDPROC

PROC barney (ptr)
“ptr:="ptr-6
ENDPROC

By far the most common use of pointers is to address (or reference)
large structures of data. It would be extremely expensive (in terms of
CPU time) to pass large amounts of data from procedure to procedure, so
addresses to such data are passed instead (and, as we know, these are just
32-bit values). The Amiga system functions (such as ones for creating
windows) require a lot of structured data, so if you plan to do any real
programming you are going to have to understand and use pointers.

1.64 beginner.guide_v39/Procedure parameters

Procedure parameters

Only local and global variables have the luxury of a large choice of
types. Procedure parameters can only be LONG or PTR TO type. This is not
really a big limitation as we shall see in the later sections.

1.65 beginner.guide_v39/ARRAY Type

ARRAY Type

Quite often, the data used by a program needs to be ordered in some
way, primarily so that it can be accessed easily. E provides a way to
achieve such simple ordering: the ARRAY type. This type (in its various
forms) is common to most computer languages.

beginner.guide_v39

46/198

Tables of data
Accessing array data
Array pointers

Point to other elements

Array procedure parameters

1.66 beginner.guide_v39/Tables of data

Tables of data

Data can be grouped together in many different ways, but probably the
most common and straight-forward way is to make a table. 1In a table the
data is ordered either vertically or horizontally, but the important thing
is the relative positioning of the elements. The E view of this kind of
ordered data is the ARRAY type. An array 1is just a fixed sized collection
of data in order. The size of an array is important and this is fixed
when it is declared. The following illustrates array declarations:

DEF a[l32] :ARRAY,
table[21] :ARRAY OF LONG,
ints[3] :ARRAY OF INT,
objs[54] :ARRAY OF myobject

The size of the array is given in the square brackets ([and]). The type
of the elements in the array defaults to CHAR, but this can be given
explicitly using the OF keyword and the type name. However, only LONG,
INT, CHAR and object types are allowed (LONG can hold pointer values
so this isn’t much of a limitation). Object types are described below
(see

OBJECT Type

) .

As mentioned above, procedure parameters cannot be arrays (see

Procedure parameters
). We will overcome this limitation soon (see

Array procedure parameters

) .

1.67 beginner.guide_v39/Accessing array data

Accessing array data

beginner.guide_v39 47 /198

To access a particular element in an array you use square brackets
again, this time specifying the index (or position) of the element you
want. Indices start at zero for the first element of the array, one for
the second element and, in general, (n-1) for the n-th element. This may
seem strange at first, but it’s the way most computer languages do it! We
will see a reason why this makes sense soon (see

Array pointers

).

DEF a[l0]:ARRAY

PROC main ()
DEF 1
FOR 1:=0 TO 9
afi] :=ixi
ENDFOR
WriteF (' The 7th element of the array a is \d\n’, al[6])
alaf[2]]:=10

WriteF (' The array is now:\n’)
FOR 1:=0 TO 9
WriteF (’ a[\d] = \d\n’, i, alil)
ENDFOR
ENDPROC

This should all seem very straight-forward although one of the lines looks
a bit complicated. Try to work out what happens to the array after the
assignment immediately following the first WriteF. 1In this assignment the
index comes from a value stored in the array itself! Be careful when
doing complicated things like this, though: make sure you don’t try to
read data from or write data to elements beyond the end of the array. 1In
our example there are only ten elements in the array a, so it wouldn’t be
sensible to talk about the eleventh element. The program could have
checked that the value stored at a[2] was a number between zero and nine
before trying to access that array element, but it wasn’t necessary in
this case. Here’s the output this example should generate:

The 7th element of the array a is 36
The array 1is now:

al[0] =0
all] =1
alz2] = 4
al3] =9
af4] = 10
a[5] = 25
al[6] = 36
al7] = 49
al[8] = 64
al9] = 81

If you do try to write to a non-existent array element strange things
can happen. This may be practically unnoticeable (like corrupting some
other data), but if you’re really unlucky you might crash your computer.
The moral is: stay within the bounds of the array.

A short-hand for the first element of an array (i.e., the one with an
index of zero) is to omit the index and write only the square brackets.

beginner.guide_v39

48/198

Therefore, a[] is the same as a[0].

1.68 beginner.guide_v39/Array pointers

Array pointers

When you declare an array the address of the (beginning of the) array
is given by the variable name without square brackets. Consider the
following program:

DEF a[l0] :ARRAY OF INT
PROC main ()

DEF ptr:PTR TO INT, i
FOR i:=0 TO 9

al[i]l:=1i
ENDFOR
ptr:=a
ptr++
ptr[]:=22

FOR i:=0 TO 9
WriteF ("a[\d] is \d\n’, 1, alil])
ENDFOR
ENDPROC

Here’s the output from it:

is

N

is
is
is
is
is
is
is
is
is

O LY Y Y DD
O 0 J o U WD EFE O
O 0O J oy U dbd W DN O

You should notice that the second element of the array has been changed
using the pointer. The ptr++ statement increments the pointer ptr to
point to the next element of the array. It is important that ptr is
declared as PTR TO INT since the array is an ARRAY OF INT. The [] is used
to dereference the pointer and therefore 22 is stored in the second
element of the array. 1In fact, the ptr can be used in exactly the same
way as an array, so ptr[l] would be the next (or third element) of the
array a (after the ptr++ statement). Also, since ptr points to the second
element of a, negative values may legitimately be used as the index, and
ptr[-1] is the first element of a.

In fact, the following declarations are identical except the first
reserves an appropriate amount of memory for the array whereas the second
relies on you having done this somewhere else in the program.

beginner.guide_v39

49/198

DEF a[20]:ARRAY OF INT

DEF a:PTR TO INT

The following diagram is similar to the diagrams given earlier

Addresses

). It is an illustration of an array,

be an array of twenty INTs.

- +
|[Variable|
| ra’ |
| —m |
| Address+————x%
- + \
\
\
e I e
|Unknown| | af[0] | | all]
Memory: [|[+-————- +] [+ +] [+
[XXX || || INT [| || INT
t=======+ t=======+ t======

As you can see,
memory which contains the array elements.
between a[0] and a[l9] are marked as
of the array.
array a.

‘Unknown’
This memory should therefore not be accessed using the

(see

a, which was declared to
—+ F——— + - +
| | al[19] | |Unknown|
+ = e +
| [1 INT [| || XXX ||
=+ +=======4 +t=======+

the variable a is a pointer to the reserved chunk of

Parts of memory that aren’t
because they are not part

1.69 beginner.guide_v39/Point to other elements

Point to other elements

We saw in the previous section how to
points to the next element in the array.
making it point to the previous element)

the p——- statement which works in the same way as the p++ statement.
pt+ and p-—- are really expressions which denote pointer wvalues.
address stored in p before it is incremented,
Therefore,

fact,
denotes the

the address after p is decremented.
addr:=p
pt++

does the same as
addr:=p++

And

increment a pointer so that it
Decrementing a pointer p (i.e.,
using
In
p++
and p-— denotes

is done in a similar way,

beginner.guide_v39 50/198

p—-
addr:=p

does the same as
addr:=p—--

The reason why ++ and —-- should be used to increment and decrement a
pointer is that values from different types occupy different numbers of
memory locations. In fact, a single memory location is a byte, and this
is eight bits. Therefore, CHAR values occupy a single byte, whereas LONG
values take up four bytes (32 bits). If p were a pointer to CHAR and it
was pointing to an array (of CHAR) the p+l memory location would contain
the second element of the array (and p+2 the third, etc.). But if p were
a pointer to an array of LONG the second element in the array would be at
pt4 (and the third at p+8). The locations p, ptl, p+2 and p+3 all make up
the LONG value at address p. Having to remember things like this is a
pain, and it’s a lot less readable than using ++ or —--. However, you must
remember to declare your pointer with the correct type in order for ++ and
-— to work correctly.

1.70 beginner.guide_v39/Array procedure parameters

Array procedure parameters

Since we now know how to get the address of an array we can simulate
passing an array as a procedure parameter by passing the address of the
array. For example, the following program uses a procedure to fill in the
first x elements of an array with their index numbers.

DEF a[l10]:ARRAY OF INT

PROC main ()
DEF i
fillin(a, 10)
FOR 1:=0 TO 9
WriteF ("a[\d] is \d\n’, i, alil)
ENDFOR
ENDPROC

PROC fillin(ptr:PTR TO INT, x)
DEF 1
FOR 1:=0 TO x-1
ptr[]:=1
ptr++
ENDFOR
ENDPROC

Here’s the output it should generate:

beginner.guide_v39 51/198

al3] is
al4] is
al5] is
al[6] is
al7] 1is
al[8] is
al9] is

O 0O J oy U b W

The array a only has ten elements so we shouldn’t fill in any more than
the first ten elements. Therefore, in the example, the call to the
procedure fillin should not have a bigger number than ten as the second
parameter. Also, we could treat ptr more like an array (and not use ++),
but in this case using ++ is slightly better since we are assigning to
each element in turn. The alternative definition of fillin (without using
++) is:

PROC fillin2 (ptr:PTR TO INT, x)

DEF i
FOR 1:=0 TO x-1
ptr[i]:=1i
ENDFOR
ENDPROC

Also, yet another version of fillin uses the expression form of ++ and the
horizontal form of the FOR loop to give a really compact definition.

PROC fillin3 (ptr:PTR TO INT, x)
DEF 1

FOR 1:=0 TO x-1 DO ptr[]l++:=1
ENDPROC

1.71 beginner.guide_v39/OBJECT Type

OBJECT Type

Objects are the E equivalent of C and Assembly structures, or Pascal
records. They are like arrays except the elements are named not numbered,
and the elements can be of different types. To find a particular element
in an object you use a name instead of an index (number).

Example object
Element selection
Element types

Amiga system objects

beginner.guide_v39

52/198

1.72 beginner.guide_v39/Example object

Example object

We’ll dive straight in with this first example, and define an object
and use it. Object definitions are global and must be made before any
procedure definitions.

OBJECT
rec
tag, check
table[8] :ARRAY
data:LONG
ENDOBJECT

PROC main ()
DEF a:rec
a.tag:=1
a.check:=a
a.data:=a.tag+(10000xa.taqg)
ENDPROC

This program doesn’t visibly do anything so there isn’t much point in
compiling it. What it does do, however, is show how a typical object is
defined and elements of an object are selected.

The object being defined in the example is rec, and its elements are
defined just like variable declarations (but without a DEF). There can be
as many lines of element definitions as you like between the OBJECT and
ENDOBJECT lines, and each line can contain any number of elements
separated by commas. The elements of the rec object are tag and check
(which are LONG), table (which is an array of CHAR with eight elements)
and data (which is also LONG). Every variable of rec object type will
have space reserved for each of these elements. The declaration of the
(local) variable a therefore reserves enough memory for one rec object.

1.73 beginner.guide_v39/Element selection

Element selection

To select elements in an object obj you use obj.name, where name is one
of the element names. In the example, the tag element of the rec object a
is selected by writing a.tag. The other elements are selected in a
similar way.

Just like an array declaration the address of an object obj is stored
in the variable obj, and any pointer of type PTR TO objectname can be used
just like an object of type objectname. Therefore, in the previous
example a is a PTR TO rec.

beginner.guide_v39 53/198

1.74 beginner.guide_v39/Element types

Element types

As the example object shows, the elements of an object can have several
different types. However, these types are limited to LONG, INT, CHAR,
ARRAY or another object type. You can’t have PTR TO or ARRAY OF; if you
try you’ll get an error saying ‘illegal/inappropriate type’ at the point
where your object is defined. Again, this isn’t much of a limitation
since, as we know, a LONG can hold a memory address.

One thing to remember about ARRAY and object-type elements in an
object: when you select these elements you get a pointer to the array or
object. You can store this value in an appropriate pointer variable and
then access the array or object elements. For example, if p is pointer to
an object from our example object type rec, you can store p.table (a
pointer to the array) in a PTR TO CHAR variable and then access the array
using this variable. The following code defines a new object type based
on rec and shows how to access the ARRAY and object typed elements.

OBJECT rec tag, check table[8]:ARRAY data:LONG ENDOBJECT

OBJECT bigrec
subrec:rec
bigtable[22] :ARRAY

ENDOBJECT

PROC main ()
DEF b:bigrec, p:PTR TO rec, s, t
p:=b.subrec
p.tag:=1
p.data:=p.tag+(10000xp.taqg)
s:=b.bigtable

s[0]:="A"

t:=p.table

t[l]:="y"
ENDPROC

Remember that the variables s and t are LONG (since they are declared with
no explicit type), and so are therefore PTR TO CHAR.

If you have an array of objects you can select an element from the
array and then an element from that object, all in the same expression.
In fact, the allowable expressions (relating to objects) are:

var . obj_element_name

var [expression] . obj_element_name
var . obj_element_name ++

var [expression] . obj_element_name ++
var . obj_element_name —-—

var [expression] . obj_element_name --

The ++ or -- apply to the pointer var. Here’s an example which uses an

beginner.guide_v39 54/198

array of objects:

OBJECT rec
tag, check
table[8] :ARRAY
data:LONG
ENDOBJECT

PROC main ()
DEF a[l0] :ARRAY OF rec, p:PTR TO rec, 1
p:=a
FOR i:=0 TO 9
ali].tag:=1
p.check++:=1
ENDFOR
FOR 1:=0 TO 9
IF a[i].tag<>al[i].check
WriteF (' Whoops, al[\d] went wrong...\n’, 1)
ENDIF
ENDFOR
ENDPROC

If you think about it for long enough you’ll see that a[0].tag is the same
as a.tag. That’s because a is a pointer to the first element of the
array, and the elements of the array are objects. Therefore, a is a
pointer to an object (the first object in the array).

1.75 beginner.guide_v39/Amiga system objects

Amiga system objects

There are many different Amiga system objects. For instance, there’s
one which contains the information needed to make a gadget (like the
‘close’ gadget on most windows), and one which contains all the
information about a process or task. These objects are vitally important
and so are supplied with E in the form of ‘modules’. Each module is
specific to a certain area of the Amiga system and contains object and
other definitions. Modules are discussed in more detail later (see

Modules
) .

1.76 beginner.guide_v39/LIST and STRING Types

LIST and STRING Types

Arrays are common to many computer languages. However, they can be a

beginner.guide_v39 55/198

bit of a pain because you always need to make sure you haven’t run off the
end of the array when you’re writing to it. This is where the STRING and
LIST types come in. STRING is very much like ARRAY OF CHAR and LIST is
like ARRAY OF LONG. However, each has a set of E (built-in) functions
which safely manipulate variables of these types without exceeding their
bounds.

Normal strings and E-strings
String functions

Lists and E-lists

List functions

Complex types

Typed lists

Static data

1.77 beginner.guide_v39/Normal strings and E-strings

Normal strings and E-strings

Normal strings are common to most programming languages. They are
simply an array of characters, with the end of the string marked by a null
character (ASCII zero). We’ve already met normal strings (see

Strings

) .
The ones we used were constant strings contained in ’ characters, and they
denote pointers to the memory where the string data is stored. Therefore,
you can assign a string constant to a pointer (to CHAR), and you’ve got an
array with ready-filled elements, i.e., an initialised array.

DEF s:PTR TO CHAR
s:='"This is a string constant’
/* Now s[] 1s T and s[2] 1is 1 */

Remember that LONG is actually PTR TO CHAR so this code is precisely the
same as:

DEF s
s:='This is a string constant’

The following diagram illustrates the above assignment to s. The first
two characters s[0] and s[1l]) are T and h, and the last character (before
the terminating null, or zero) is t. Memory marked as ‘Unknown’ is not

part of the string constant.

beginner.guide_v39 56 /198

|[Variable|
| s’ |
| == |
|Address +————x%
Fmm + \
\
\
- + ==\ + +——— + 4 + 4 +
| Unknown | s[0] |] s[1] | s[24] | s[25] | |Unknown|
Memory: |+-————- +] [+ +] [+ R T I +] [+ +] |t + |
XXX L "T" [1 "h" | LEome™ 10 e 0 11 XXX
t=======4 4=======4 f=======4 t=======4 f=======4 f=======4

E-strings are very similar to normal strings and, in fact, an E-string
can be used wherever a normal string can. However, the reverse is not
true, so if something requires an E-string you cannot use a normal string
instead. The difference between a normal string and an E-string was
hinted at in the introduction to this section: E-strings can be safely
altered without exceeding their bounds. A normal string is Jjust an array
so you need to be careful not to exceed its bounds. However, an E-string
knows what its bounds are, and so any of the string manipulation functions
can alter them safely.

An E-string (STRING type) variable is declared as in the following
example, with the maximum size of the E-string given Jjust like an array
declaration.

DEF s[30]:STRING

As with an array declaration, the variable s is actually a pointer to the
string data. To initialise an E-string you need to use the function
StrCopy as we shall see.

1.78 beginner.guide_v39/String functions

String functions

There are a number of useful built-in functions which manipulate
strings. Remember that if an E-string can be used wherever a normal
string can, but normal strings cannot be used where an E-string is
required. If a parameter is marked as string then a normal or E-string
can be passed as that parameter, but if it is marked as e-string then only
an E-string may be used.

String (maxsize)
Allocates memory for an E-string of maximum size maxsize and returns

a pointer to the string data. It is used to make space for a new
E-string, like a STRING declaration does. The following code
fragments are practically equivalent:

DEF s[37]:STRING

beginner.guide_v39 57 /198

DEF s:PTR TO CHAR
s:=String(37)

The slight difference is that there may not be enough memory left to
hold the E-string when the String function is used. In that case the
special value NIL (a constant) is returned. Your program must check
that the value returned is not NIL before you use it as an E-string
(or dereference it). The memory for the declaration version is
allocated when the program is run, so your program won’t run if there
isn’t enough memory. The String version is often called dynamic
allocation because it happens only when the program is running; the
declaration version has allocation done by the E compiler.

StrCmp (stringl, string2, length)
Compares stringl with string2 (they can both be normal or E-strings).
Returns TRUE if the first length characters of the strings match, and
FALSE otherwise. The length can be the special constant ALL which
means that the strings must agree on every character. For example,
the following comparisons all return TRUE:

StrCmp (' ABC’, 'ABC’, ALL)
StrCmp (' ABCd’, ’"ABC’, 3)
StrCmp (' ABCde’ , " ABCxxjs’, 3)

And the following return FALSE (notice the case of the letters):

StrCmp (ABC’, ’ABc’, ALL)
StrCmp (ABCd’, ’ABC’, ALL)

StrCopy (e-string, string, length)
Copies the contents of string to e-string. Only length characters
are copied from the source string, but the special constant ALL can
be used to indicate that the whole of the source string is to be
copied. Remember that E-strings are safely manipulated, so the
following code fragment results in s becoming More th, since its
maximum size is (from its declaration) seven characters.

DEF s[7]:STRING
StrCopy (s, '"More than seven characters’, ALL)

A declaration using STRING (or ARRAY) reserves a small part of
memory, and stores a pointer to this memory in the variable being
declared. So to get data into this memory you need to copy it there,
using StrCopy. If you’re familiar with very high-level languages
like BASIC you should take care, because you might think you can
assign a string to an array or an E-string variable. In E (and
languages like C and Assembly) you must explicitly copy data into
arrays and E-strings. You should not do the following:

/+ You don’t want to do things like this! x/
DEF s[80]:STRING
s:='This is a string constant’

This is fairly disastrous: it throws away the pointer to reserved
memory that was stored in s and replaces it by a pointer to the
string constant. s is then no longer an E-string, and cannot be
repaired using StrLen. If you want s to contain the above string you

beginner.guide_v39 58/198

must use StrCopy:

DEF s[80]:STRING
StrCopy (s,’This is a string constant’,ALL)

The moral is: remember when you are using pointers to data and when
you need to copy data. Also, remember that assignment does not copy
large arrays of data, it only copies pointers to data, so if you want
to store some data in an ARRAY or STRING type variable you need to
copy it there.

StrAdd (e-string, string, length)
This does the same as StrCopy but the source string is copied onto
the end of the destination E-string. The following code fragment
results in s becoming This is a string and a half.

DEF s[30]:STRING
StrCopy (s, 'This is a string’, ALL)
StrAdd (s, " and a half’, ALL)

StrLen (string)
Returns the length of string. This assumes that the string is
terminated by a null character (i.e., ASCII zero), which is true for

any strings made from E-strings and string constants. However, you
can make a string constant look short if you use the null character
(the special sequence \0) in it. For instance, these calls all

return three:

Strlen (’abc’)
StrLen (' abc\0Odef’)

In fact, most of the string functions assume strings are
null-terminated, so you shouldn’t use null characters in your strings
unless you really know what you’re doing.

For E-strings StrLen is less efficient than the EstrLen function.

Estrlen (e-string)
Returns the length of e-string (remember this can only be an

E-string). This is much more efficient than StrlLen since E-strings
know their length and it doesn’t need to search the string for a null
character.

StrMax (e-string)
Returns the maximum length of e-string. This not necessarily the
current length of the E-string, rather it is the size used in the
declaration with STRING or the call to String.

RightStr(e-stringl,e-string2, length)
This is like StrCopy but it copies the right-most characters from
e-string2 to e-stringl and both strings must be E-strings. At most
length characters are copied, and the special constant ALL cannot be
used (to copy all the string you should, of course, use StrCopy).
For instance, a value of one for length means the last character of
e-string2 is copied to e-stringl.

MidStr (e-string, string, index, length)

beginner.guide_v39

59/198

Copies the contents of string starting at index (which is an index
just like an array index) to e-string. At most length characters are
copied, and the special constant ALL can be used if all the remaining
characters in string should be copied. For example, the following
two calls to MidStr result in s becoming four:

DEF s[30] :STRING
MidStr (s, ’Just four’, 5, ALL)
MidStr (s, ’Just four, sir’, 5, 4)

InStr(stringl, string2, startindex)
Returns the index of the first occurrence of string2 in stringl
starting at startindex (in stringl). If string2 could not be found
then -1 is returned.

TrimStr (string)
Returns the address of (i.e., a pointer to) the first non-whitespace
character in string. For instance, the following code fragment
results in s becoming 12345.

DEF s:PTR TO CHAR
s:=TrimStr ('’ \n \t 12345")

LowerStr (string)
Converts all uppercase letters in string to lowercase. This change
is made in-place, i.e., the contents of the string are directly
affected.

UpperStr (string)
Converts all lowercase letters in string to uppercase. Again, this
change is made in-place.

SetStr (e-string, length)
Sets the length of e-string to length. E-strings know how long they
are, so i1if you alter an E-string (without using an E-string function)
and change its size you need to set its length using this function
before you can use it as an E-string again. For instance, if you’ve
used an E-string like an array (which you can do) and written
characters to it directly you must set its length before you can
treat it as anything other than an array/string:

DEF s[10]:STRING

s[0]:="a" /+* Remember that "a" is a character value. =/
s[1]:="b"

s[2]:="c"

s[3]:="d" /* At this point s is just an array of CHAR. «*/
SetStr (s, 4) /* Now, s can be used as an E-string again. =/

SetStr (s, 2) /+x s is a bit shorter, but still an E-string.x/

Notice that this function can be used to shorten an E-string (but you
cannot lengthen it this way).

Val (string, address)
What this function does is straight-forward but how you use it is a
bit complicated. Basically, it converts string to a LONG integer.

Leading whitespace is ignored, and a leading % or $ means that the
string denotes a binary or hexadecimal integer (in the same way they

beginner.guide_v39

60/198

do for numeric constants). The decoded integer is returned. The
number of characters of string that were read to make the integer is
stored at address, which is usually a variable address (from using
{var }). If address is the special constant NIL (or zero) then

this number is not stored. You can use this number to calculate the
position in the string which was not part of the integer in the
string. If an integer could not be decoded from the string then zero
is returned and zero is stored at address.

Follow the comments in this example, and pay special attention to the
use of the pointer p.

DEF s[30]:STRING, value, chars, p:PTR TO CHAR
StrCopy (s, " \t \n 10 \t $3F -%0101010’', ALL)
value:=Val ("abcde 10 20’, {chars})

/+ After the above line, value and chars will both be zero */
value:=Val (s, {chars})

/* Now value will be 10, chars will be 7 x/
p:=s+chars

/+ p now points to the space after the 10 in s */
value:=Val (p, {chars})

/+ Now value will be $3F (63), chars will be 6 x/
p:=p+chars

/+ p now points to the space after the $3F in s */
value:=Val (p, {chars})

/* Now value will be -%0101010 (-42), chars will be 10 =%/

There’s a couple of other string functions (ReadStr and StringF) which
will be discussed later (see
Input and output functions

).

1.79 beginner.guide_v39/Lists and E-lists

Lists and E-lists

Lists are just like strings with LONG elements rather than CHAR
elements (so they are very much like ARRAY OF LONG). The list equivalent
of an E-string is something called an E-list. It has the same properties
as an E-string, except the elements are LONG (so could be pointers).
Normal lists are most like string constants, except that the elements can
be built from variables and so do not have to be constants. Just as
strings are not true E-strings, (normal) lists are not true E-lists.

Lists are written using [and] to delimit comma separated elements.
Like string constants a list returns the address of the memory which
contains the elements.

For example the following code fragment:

DEF 1list:PTR TO LONG, number
number:=22

beginner.guide_v39 61/198

list:=[1,2,3,number]
is equivalent to:

DEF list[4]:ARRAY OF LONG, number
number:=22

1ist[0]: =l
list[1]:
list[2]:
list[3]: —number

Now, which of these two versions would you rather write? As you can see,
lists are pretty useful for making your program easier to write and much
easier to read.

E-1list variables are like E-string variables and are declared in much
the same way. The following code fragment declares 1t to be an E-list of
maximum size 30. As ever, 1lt is then a pointer (to LONG), and it points
to the memory allocated by the declaration.

DEF 1t[30]:LIST

Lists are most useful for writing tag lists, which are increasingly
used in important Amiga system functions. A tag list is a list where the
elements are thought of in pairs. The first element of a pair is the tag,
and the second is some data for that tag. See the ‘Rom Kernel Reference
Manual (Libraries)’ for more details.

1.80 beginner.guide_v39/List functions

List functions

There are a number of list functions which are very similar to the

string functions (see

String functions

) . Remember that E-lists are the
list equivalents of E-strings, i.e., they can be altered and extended
safely without exceeding their bounds. As with E-strings, E-lists are
downwardly compatible with lists. Therefore, if a function requires a
list as a parameter you can supply a list or an E-list. But if a function
requires an E-list you cannot use a list in its place.

List (maxsize)
Allocates memory for an E-list of maximum size maxsize and returns a
pointer to the list data. It is used to make space for a new E-list,
like a LIST declaration does. The following code fragments are (as
with String) practically equivalent:

DEF 1t [46]:LIST

DEF 1t:PTR TO LONG
lt:=List (46)

beginner.guide_v39 62/198

Remember that you need to check that the return value from List is
not NIL before you use it as an E-list.

ListCmp(listl,list2, length)
Compares listl with list2 (they can both be normal or E-lists).
Works Jjust like StrCmp does for E-strings, so, for example, the
following comparisons all return TRUE:

ListCmp([1,2,3,4],
ListCmp(I[1,2,3,4], (1,2,3,71, 3)
ListCmp([1,2,3,4,51, [1,2,31, 3)

14 4

ListCopy (e—-1list,list, length)
Works Jjust like StrCopy, and the following example shows how to
initialise an E-list:

DEF 1t [7]:LIST, x
x:=4
ListCopy(lt, [1,2,3,x], ALL)

As with StrCopy, an E-list cannot be over-filled using ListCopy.

ListAdd(e-1list,list, length)
Works Jjust like StrAdd, so this next code fragment results in the
E-1list 1t becoming the E-list version of [1,2,3,4,5,6,7,8].

DEF 1t[30]:LIST
ListCopy(lt, [1,2,3,4], ALL)
ListAdd(1t, [5,6,7,8], ALL)

ListLen(list)
Works Jjust like StrLen, returning the length of list. There is no
E-1list specific length function.

ListMax (e—1list)
Works Jjust like StrMax, returning the maximum length of the e-list.

SetList (e-1list, length)
Works just like SetStr, setting the length of e-list to length.

ListItem(list, index)
Returns the element of list at index. For example, if 1t is an
E-list then ListItem(lt,n) is the same as 1lt[n]. This function is
most useful when the list is not an E-list. For example, the
following two code fragments are equivalent:

WriteF (ListItem([’Fred’,’Barney’,’Wilma’,’Betty’], name))
DEF 1t:PTR TO LONG

lt:=['"Fred’,’'Barney’,’'Wilma’, ' Betty’]
WriteF (1t [name])

beginner.guide_v39

63 /198

1.81 beginner.guide_v39/Complex types

Complex types

In E the STRING and LIST types are called complex types. Complex typed
variables can also be created using the String and List functions as we’ve
seen in the previous sections.

1.82 beginner.guide_v39/Typed lists

Typed lists

Normal lists contain LONG elements, so you can write initialised arrays
of LONG elements. What about other kinds of array? Well, that’s what
typed lists are for. You specify the type of the elements of a list using

:type after the closing]. The allowable types are CHAR, INT, LONG and
any object type. There is a subtle difference between a normal, LONG list
and a typed list (even a LONG typed list): only normal lists can be used
with the 1list functions (see

List functions
). For this reason, the term
‘list’ tends to refer only to normal lists.

The following code fragment uses the object rec defined earlier (see

Example object
) and gives a couple of examples of typed lists:

DEF ints:PTR TO INT, objects:PTR TO rec, p:PTR TO CHAR
ints:=[1,2,3,4] :INT
p:='fred’
objects:=[1,2,p,4,
300,301, "barney’,303] :rec

It is equivalent to:

DEF ints[4]:ARRAY OF INT, objects[2]:ARRAY OF rec, p:PTR TO CHAR

ints[0]:=1

ints[1l]:=2

ints[2]:=3

ints[3]:=4

p:='fred’
objects[0].tag:=1
objects[0].check:=2
objects[0] .table:=p
objects[0] .data:=4
objects[l] .table:="barney’
objects[1l].tag:=300
objects[l].data:=303
objects[1l].check:=301

beginner.guide_v39

64 /198

The last group of assignments to objects[l] have deliberately been
shuffled in order to emphasise that the order of the elements in the
definition of the object rec is significant. Each of the elements of the
list corresponds to an element in the object, and the order of elements in
the list corresponds to the order in the object definition. In the
example, the (object) list assignment line was broken after the end of the
first object (the fourth element) to make it a bit more readable. The
last object in the list need not be completely defined, so, for instance,

the second line of the assignment could have contained only three elements.

1.83 beginner.guide_v39/Static data

Static data

String constants (e.g., fred), lists (e.g., [1,2,3]) and typed lists
(e.g., [1,2,3]1:INT) are static data. This means that the address of the
(initialised) data is fixed when the program is run. Normally you don’t
need to worry about this, but, for instance, if you want to have a series
of lists as initialised arrays you might be tempted to use some kind of
loop:

PROC main ()
DEF i, a[l0]:ARRAY OF LONG, p:PTR TO LONG
FOR 1:=0 TO 9
alil:=[1, i, ixi]
/+ This assignment is probably not what you want! x/
ENDFOR
FOR i:=0 TO 9
p:=ali]
WriteF (“a[\d] is an array at address \d\n’, i, p)
WriteF (! and the second element is \d\n’, pl[l])
ENDFOR
ENDPROC

The array a is an array of pointers to initialised arrays (which are all
three elements long). But, as the comment suggests and the program shows,
this probably doesn’t do what was intended, since the list is static.

That means the address of the list is fixed, so each element of a gets the
same address (i.e., the same array). Since i1 is used in the 1list the
contents of that part of memory varies slightly as the first FOR loop is
processed. But after this loop the contents remain fixed, and the second

element of each of the ten arrays is always nine. This is an example of
the output that will be generated (the ... represents a number of similar
lines):

al[0] is an array at address 4021144
and the second element is 9

all] is an array at address 4021144
and the second element is 9

al[9] is an array at address 4021144
and the second element is 9

beginner.guide_v39 65/198

The solution is to use the dynamic allocation function List and copy the
normal list into the new E-list using ListCopy:

PROC main ()
DEF i, a[l0]:ARRAY OF LONG, p:PTR TO LONG
FOR 1:=0 TO 9
al[i] :=List (3)
/* Must check that the allocation succeeded before copying =/
IF a[i]<>NIL THEN ListCopy(alil, [1, i, ixi], ALL)

ENDFOR
FOR i:=0 TO 9
p:=ali]
IF p=NIL
WriteF (' Could not allocate memory for a[\d]\n’, i)
ELSE

WriteF ("a[\d] is an array at address \d\n’, i, p)
WriteF(’ and the second element is \d\n’, p[l])
ENDIF
ENDFOR
ENDPROC

The problem is not so bad with string constants, since the contents are
fixed. However, if you alter the contents explicitly, you will need to
take care not to run into the same problem, as this next example shows.

PROC main ()
DEF i, strings[10]:ARRAY OF LONG, s:PTR TO CHAR
FOR i1i:=0 TO 9
strings[i]:="Hello World\n’
/* This assignment is probably not what you want! =/
ENDFOR
s:=strings[4]
s [5] c=nxn
FOR 1:=0 TO 9
WriteF (' strings[\d] is ’, 1i)
WriteF (strings[i])
ENDFOR
ENDPROC

This is an example of the output that will be generated (again, the
represents a number of similar lines) ::

strings[0] is HelloXWorld
strings[1l] is HelloXWorld

strings[9] is HelloXWorld

Again, the solution is to use dynamic allocation. The functions String
and StrCopy should be used in the same way that List and ListCopy were
used above.

1.84 beginner.guide_v39/Linked Lists

beginner.guide_v39 66 /198

Linked Lists

E-lists and E-strings have a useful extension: they can be used to make
linked lists. These are like the lists we’ve seen already, except the
list elements do not occupy a contiguous block of memory. Instead, each
element has an extra piece of data: a pointer to the next element in the
list. This means that each element can be anywhere in memory. (Normally,
the next element of a list is in the next position in memory.) The end of
a linked list has been reached when the pointer to the next element is the
special value NIL (a constant). You need to be very careful to check that
the pointer is not NIL because if it is and you dereference it the program
will most definitely crash.

The elements of a linked list are E-lists or E-strings (i.e., the
elements are complex typed). So, you can link E-lists to get a ‘linked
list of E-lists’ (or, more simply, a ‘list of lists’). Similarly, linking
E-strings gives ‘linked list of E-strings’, or a ‘list of strings’. You
don’t have to stick to these two kinds of linked lists, though: you can
use a mixture of E-lists and E-strings in the same linked list. To link
one complex typed element to another you use the Link function and to find
subsequent elements in a linked list you use the Next or Forward functions.

Link (complexl, complex?2)
Links complexl to complex2. Both must be an E-list or an E-string,
with the exception that complex2 can be the special constant NIL to
indicate that complexl is the end of the linked list. The value
complexl is returned by the function, which isn’t always useful so,
usually, calls to Link will be used as statements rather than

functions. The effect of Link is that complexl will point to
complex2 as the next element in the linked list (so complexl is
the head of the list, and complex2 is the tail). For both E-lists

and E-strings the pointer to the next element is initially NIL, so
you will only need to use Link with a NIL parameter when you want to
make a linked list shorter (by losing the tail).

Next (complex)
Returns the pointer to the next element in the linked list. This may
be the special constant NIL if complex is the last element in the
linked list. Be careful to check that the value isn’t NIL before you
dereference it! Follow the comments in the example below:

DEF s[23]:STRING, t[7]:STRING, 1t[41]:LIST, 1lnk

/+ The next two lines set up the linked list "1nk" =/
Ink:=Link (1lt,t) /* 1lnk list starts at 1t and is lt-—>t */
Ink:=Link (s, 1lt) /= Now it starts at s and is s-—>1lt->t */
/+* The next three lines follow the links in "1lnk" «*/

1nk:=Next (1lnk) / * Now it starts at 1t and is 1lt->t */
Ink:=Next (1nk) / * Now it starts at t and is t */
Ink:=Next (1nk) /* Now lnk is NIL so the list has ended «/

You may safely call Next with a NIL parameter, and in this case it
will return NIL.

Forward (complex, expression)
Returns a pointer to the element which is expression number of links

beginner.guide_v39 67/198

down the linked list complex. If expression represents the value one
a pointer to the next element is returned (just like using Next). If
it’s two a pointer to the element after that is returned.

If expression represents a number which is greater than the number of
links in the list the special value NIL is returned.

Since the link in a linked list is a pointer to the next element you
can only look through the list from beginning to end. Technically this is
a singly linked list (a doubly linked list would also have a pointer to
the previous element in the list, enabling backwards searching through the
list).

Linked lists are useful for building lists that can grow quite large.
This is because it’s much better to have lots of small bits of memory than
a large lump. However, you only need to worry about these things when

you’re playing with quite big lists (as a rough guide, ones with over
100,000 elements are big!).

1.85 beginner.guide_v39/More About Statements and Expressions

More About Statements and Expressions
R IR IR b 2 S b S Sh b b Sb b 2 Sh b S S b dh b 2 dh b b db b i db Sb b Jb Ib 3 4

This chapter details various E statements and expressions that were not

covered in Part One. It also completes some of the partial descriptions
given in Part One.

Turning an Expression into a Statement
Initialised Declarations

Assignments

More Expressions

More Statements

Quoted Expressions

Assembly Statements

1.86 beginner.guide_v39/Turning an Expression into a Statement

Turning an Expression into a Statement

The VOID operator converts an expression to a statement. It does this

beginner.guide_v39 68 /198

by evaluating the expression and then throwing the result away. This may
not seem very useful, but in fact we’ve done it a lot already. We didn’t
use VOID explicitly because E does this automatically if it finds an
expression where it was expecting a statement (normally when it is on a
line by itself). Some of the expressions we’ve turned into statements
were the procedure calls (to WriteF and fred) and the use of ++. Remember
that all procedure calls denote values because they’re really functions
that, by default, return zero (see

Procedures as Functions

) .
For example, the following code fragments are equivalent:

VOID WriteF ('Hello world\n’)
VOID x++

WriteF ('Hello world\n’)
x++

Since E automatically uses VOID it’s a bit of a waste of time writing it
in, although there may be occasions where you want to use it to make this

voiding process more explicit (to the reader). The important thing is the
fact that expressions can validly be used as statements in E.

1.87 beginner.guide_v39/Initialised Declarations

Initialised Declarations

Some variables can be initialised using constants in their declarations.
The variables you cannot initialise in this way are array and complex type
variables (and procedure parameters, obviously). All the other kinds can
be initialised, whether they are local or global. An initialised
declaration looks very much like a constant definition, with the wvalue
following the variable name and a = character joining them. The following
example illustrates initialised declarations:

SET ENGLISH, FRENCH, GERMAN, JAPANESE, RUSSIAN
CONST FREDLANGS=ENGLISH OR FRENCH OR GERMAN

DEF fredspeak=FREDLANGS,
p=NIL:PTR TO LONG, g=0:PTR TO rec

PROC fred()

DEF x=1, y=88

/* Rest of procedure */
ENDPROC

Notice how the constant FREDLANGS needs to be defined in order to
initialise the declaration of fredspeak to something mildly complicated.
Also, notice the initialisation of the pointers p and g, and the position
of the type information.

beginner.guide_v39

69/198

Of course, if you want to initialise variables with anything more
complicated than a constant you can use assignments at the start of the
code. Generally, you should always initialise your variables (using
either method) so that they are guaranteed to have a sensible value when
you use them. Using the value of a variable that you haven’t initialised
in some way will probably get you in to a lot of trouble, because the
value will just be some random value that happened to be in the memory
used by the variable. There are rules for how E initialises some kinds of
variables (see the ‘Reference Manual’, but it’s wise to explicitly
initialise even those, as (strangely enough!) this will make your program
more readable.

1.88 beginner.guide_v39/Assignments

Assignments

We’ve already seen some assignments—--these were assignment statements.
Assignment expressions are similar except (as you’ve guessed) they can be
used in expressions. This is because they return the value on the
right-hand side of the assignment as well as performing the assignment.
This is useful for efficiently checking that the value that’s been
assigned is sensible. For instance, the following code fragments are
equivalent, but the first uses an assignment expression instead of a
normal assignment statement.

IF (x:=y*z)=0

WriteF ('Error: y*z 1is zero (and x is zero)\n’)
ELSE

WriteF ('OK: y*z 1s not zero (and x 1is y=*z)\n’)
ENDIF

X 1=y *Z
IF x=0

WriteF ('Error: y*z is zero (and x 1s zero)\n’)
ELSE

WriteF (OK: y*z is not zero (and x is y=*z)\n’)
ENDIF

You can easily tell the assignment expression: it’s in parentheses and not
on a line by itself. Notice the use of parentheses to group the
assignment expression. Technically, the assignment operator has a very
low precedence. Untechnically, it will take as much as it can of the
right-hand side to form the value to be assigned, so you need to use
parentheses to stop x getting the value ((y*z)=0) (which will be TRUE or
FALSE, i.e., -1 or zero).

Assignment expressions, however, don’t allow as rich a left-hand side
as assignment statements. The only thing allowed on the left-hand side of
an assignment expression is a variable name, whereas the statement form
allows:

var

beginner.guide_v39 70/198

var [expression]
var . obj_element_name
var [expression] . obj_element_name
~ var
And each of these may end with ++ or —--. Therefore, the following are all

valid assignments (the last three use assignment expressions):

x[axb] :=rubble
X.apple++:=3

x[22] .apple:=yxz
x[].pear——:=fred(2,4)

X:=(y:=2)
x[y*z].orange:=(IF (y:=z)=2 THEN 77 ELSE 33)
WriteF('x is now \d\n’, x:=1+(y:=(z:=fred(3,5)/2)*8))

You may be wondering what the ++ or —-- affect. Well, it’s very simple:
they only affect the var, which is x in all of the examples above. Notice
that x[].pear-—- is the same as x.pear--, for the same reasons mentioned

earlier (see
Element types
) .

1.89 beginner.guide_v39/More Expressions

More Expressions

This section discusses side-effects, details two new operators (BUT and
SIZEOF) and completes the description of the AND and OR operators.

Side-effects
BUT expression
Bitwise AND and OR

SIZEOF expression

1.90 beginner.guide_v39/Side-effects

Side-effects

beginner.guide_v39

71/198

If evaluating an expression causes the contents of variables to change
then that expression is said to have side-effects. An assignment
expression is a simple example of an expression with side-effects. Less
obvious ones involve function calls with pointers to variables.
Generally, expressions with side-effects should be avoided unless it 1is
really obvious what is happening. This is because it can be difficult to
find problems with your program’s code if subtleties are buried in
complicated expressions. On the other hand, side-effecting expressions
are concise and often very elegant. They are also useful for obfuscating
your code (i.e., making it difficult to understand--a form of copy
protection!) .

1.91 beginner.guide_v39/BUT expression

BUT expression

BUT is used to sequence two expressions. expl BUT exp2 evaluates expl,
and then evaluates and returns the value of exp2. This may not seem very
useful at first sight, but if the first expression is an assignment it
allows for a more general assignment expression. For example, the
following code fragments are equivalent:

fred((x:=12%«3) BUT x+y)

X:=12%3
fred(x+y)

Notice that parentheses need to be used around the assignment expression
(in the first fragment) for the reasons given earlier (see
Assignments

).

1.92 beginner.guide_v39/Bitwise AND and OR

Bitwise AND and OR

As hinted in the earlier chapters, the operators AND and OR are not
simply logical operators. In fact, they are both bit-wise operators,

where a bit is a binary digit (i.e., the zeroes or ones in the binary form

of a number). So, to see how they work we should look at what happens to
zeroes and ones:

beginner.guide_v39 72/198

Now, when you AND or OR two numbers the corresponding bits (binary
digits) of the numbers are compared individually, according to the above
table. So if x were %0111010 and y were %1010010 then x AND y would be
%$0010010 and x OR y would be %$1111010:

%0111010 %$0111010
AND OR

%$1010010 %$1010010

%0010010 %$1111010

The numbers (in binary form) are lined up above each other, Jjust like you
do additions with normal numbers (i.e., starting with the right-hand
digits, and maybe padding with zeroes on the left-hand side). The two
bits in each column are AND-ed or OR-ed to give the result below the
dashed line.

So, how does this work for TRUE and FALSE and logic operations? Well,
FALSE is the number zero, so all the bits of FALSE are zeroes, and TRUE 1is
-1, which is has all 32 bits as ones (these numbers are LONG so they are

32-bit quantities). So AND-ing and OR-ing these values always gives
numbers which have all zero bits (i.e., FALSE) or all one bits (i.e.,
TRUE), as appropriate. It’s only when you start mixing numbers that

aren’t zero or -1 that you can muck up the logic. The non-zero numbers
one and four are (by themselves) considered to be TRUE, but 4 AND 1 is
%100 AND %001 which is zero (i.e., FALSE). So when you use AND as the
logical operator it’s not strictly true that all non-zero numbers
represent TRUE. OR does not give such problems so all non-zero numbers
are treated as TRUE. Run this example to see why you should be careful:

PROC main ()
test (TRUE, "TRUE\t\t’)
test (FALSE, "FALSE\t\t’)
test (1, T1INtE\t")
test (4, TANt\t")

(
(
(
test (TRUE OR TRUE, 'TRUE OR TRUE\t')
(
(
(

test (TRUE AND TRUE, ’'TRUE AND TRUE\t’)

test (1 OR 4, "1 OR 4\t\t’)

test (1 AND 4, "1 AND 4\t\t’)
ENDPROC

PROC test (x, title)

WriteF (title)

WriteF (IF x THEN ’ is TRUE\n’ ELSE ’ is FALSE\n’)
ENDPROC

Here’s the output that should be generated:

TRUE is TRUE
FALSE is FALSE
1 is TRUE
4 is TRUE
TRUE OR TRUE is TRUE
TRUE AND TRUE is TRUE

1 OR 4 is TRUE

beginner.guide_v39

737198

1 AND 4 is FALSE

So, AND and OR are primarily bit-wise operators, and they can be used
as logical operators under most circumstances, with zero representing
false and all other numbers representing true. Care must be taken when
using AND with some pairs of non-zero numbers, since the bit-wise AND of
such numbers does not always give a non-zero (or true) result.

1.93 beginner.guide_v39/SIZEOF expression

SIZEOF expression

SIZEOF returns the size, in bytes, of an object. This can be useful
for determining storage requirements. For instance, the following code
fragment prints the size of the object rec:

OBJECT rec
tag, check
table[8] : ARRAY
data:LONG
ENDOBJECT

PROC main ()
WriteF (' Size of rec object is \d bytes\n’, SIZEOF rec)
ENDPROC

You may think that SIZEOF is unnecessary because you can easily
calculate the size of an object just by looking at the sizes of the
elements. Whilst this is generally true (it was for the rec object),
there is one thing to be careful about: alignment. This means that ARRAY,
INT, LONG and object typed elements must start at an even memory address.
Normally this isn’t a problem, but if you have an odd number of
consecutive CHAR typed elements or an odd sized ARRAY, an extra, pad byte
is introduced into the object so that the following element is aligned
properly. This pad byte can be considered part of an ARRAY, so in effect
this means array sizes are rounded up to the nearest even number.
Otherwise, pad bytes are just an unusable part of an object, and their
presence means the object size is not gquite what you’d expect. Try the
following program:

OBJECT rec2
tag, check
table[7] : ARRAY
data:LONG
ENDOBJECT

PROC main ()
WriteF ('Size of rec2 object is \d bytes\n’, SIZEOF rec2)
ENDPROC

The only difference between the rec and rec2 objects is that the array
size is seven in rec2. If you run the program you’ll see that the size of
the object has not changed. We might just as well have declared the table

beginner.guide_v39

747198

element to be a slightly bigger array (i.e., have eight elements).

1.94 beginner.guide_v39/More Statements

More Statements

This section details four new statements (INC, DEC, JUMP and LOOP) and
describes the use of labelling.

INC and DEC statements
Labelling and the JUMP statement

LOOP block

1.95 beginner.guide_v39/INC and DEC statements

INC and DEC statements

INC x is the same as the statement x:=x+1. However, because it doesn’t
do an addition it’s a bit more efficient. Similarly, DEC x is the same as
x:i=x-1.

The observant reader may think that INC and DEC are the same as ++ and
—-—. But there’s one important difference: INC x always increases x by
one, whereas x++ may increase x by more than one depending on the type to
which x points. For example, if x were a pointer to INT then x++ would
increase x by two (INT is 1l6-bit, which is two bytes).

1.96 beginner.guide_v39/Labelling and the JUMP statement

Labelling and the JUMP statement

A label names a position in a program, and these names are global (they
can be used in any procedure). The most common use of label is with the
JUMP statement, but you can also use labels to mark the position of some
data (see

Assembly Statements

). To define a label you write a name
followed by a colon immediately before the position you want to mark.
This must be just before the beginning of a statement, either on the
previous line (by itself) or the start of the same line.

beginner.guide_v39 75/198

The JUMP statement makes execution continue from the position marked by

a label. This position must be in the same procedure, but it can be, for
instance, outside of a loop (and the JUMP will then have terminated that
loop). For example, the following code fragments are equivalent:

x:=1

y:i=2

JUMP rubble

x:=9999

y:=1234

rubble:

z:=88

x:=1

y:i=2

z:=88

As you can see the JUMP statement has caused the second group of
assignments to x and y to be skipped. A more useful example uses JUMP to
help terminate a loop:

x:=1
y:i=2
WHILE x<10
IF y<10
WriteF ('x is \d, y is \d\n’, x, vy)
ELSE
JUMP end
ENDIF
X:1=xX+2
yi=y+2
ENDWHILE
end:
WriteF ('Finished!\n’)

This loop terminates if x is not less than ten (the WHILE check), or if y
is not less than ten (the JUMP in the IF block). This may seem pretty
familiar, because it’s practically the same as an example earlier (see

WHILE loop
). In fact, it’s equivalent to:

x:=1
y:=2
WHILE (x<10) AND (y<10)
WriteF ('x is \d, y is \d\n’, x, V)

X:=xX+2
yi=y+2
ENDWHILE

WriteF ('Finished!\n’)

beginner.guide_v39 76/198

1.97 beginner.guide_v39/LOOP block

LOOP block

A LOOP block is a multi-line statement. It’s the general form of loops
like the WHILE loop, and it builds a loop with no check. So, this kind of
loop would normally never end. However, as we now know, you can terminate
a LOOP block using the JUMP statement. As an example, the following two
code fragments are equivalent:

x:=0
LOOP
IF x<100
WriteF ('x is \d\n’, =x++)
ELSE
JUMP end
ENDIF
ENDLOOP
end:
WriteF ('Finished\n’)

x:=0
WHILE x<100
WriteF ('x is \d\n’, =x++)
ENDWHILE
WriteF ('Finished\n’)

1.98 beginner.guide_v39/Quoted Expressions

Quoted Expressions

Quoted expressions are a powerful feature of the E language, and they
require quite a bit of advanced knowledge. Basically, you can gquote any
expression by starting it with the back-quote character ' (be careful not
to get it mixed up with the quote character ’ which is used for strings).
This quoting action does not evaluate the expression, instead the address
of the code for the expression is returned. This address can be used just
like any other address, so you can, for instance, store it in a variable
and pass it to procedures. O0Of course, at some point you will use the
address to execute the code and get the value of the expression.

The idea of quoted expressions was borrowed from the functional
programming language Lisp. Also borrowed were some powerful functions

which combine lists with quoted expressions to give very concise and
readable statements.

Evaluation

Quotable expressions

beginner.guide_v39

777198

Lists and quoted expressions

1.99 beginner.guide_v39/Evaluation

Evaluation

When you’ve quoted an expression you have the address of the code which
calculates the value of the expression. To evaluate the expression you
pass this address to the Eval function. So now we have a round-about way
of calculating the value of an expression.

PROC main ()
DEF adr, x, Vy
x:=0; y:=0
adr:=‘1+(fred(x,1) *8) -y
X:=2; y:=7

WriteF (! The value is \d\n’, Eval (adr))

x:=1; y:=100

WriteF (' The value is now \d\n’, Eval (adr))
ENDPROC

PROC fred(a,b) RETURN (a+tb)xa+20
This is the output that should be generated:

The value is 202
The value is now 77

This example shows a quite complicated expression being quoted. The
address of the expression is stored in the variable adr, and the
expression is evaluated using Eval in the calls to WriteF. The values of
the variables x and y when the expression is quoted are irrelevant--only
their values each time Eval is used are significant. Therefore, when Eval
is used in the second call to WriteF the values of x and y have changed so
the resulting value is different.

Repeatedly evaluating the same expression is the most obvious use of
quoted expressions. Another common use is when you want to do the same
thing for a variety of different expressions. For example, if you wanted
to discover the amount of time it takes to calculate the results of
various expressions it would be best to use quoted expressions, something
like this:

DEF x,vy
PROC main ()
x:=999; y:=173
time (‘x+vy, "Addition’)
time (‘x*y, "Multiplication’)

time (‘fred(x), ’'Procedure call’)
ENDPROC

beginner.guide_v39 78/198

PROC time (exp, message)
WriteF (message)
/* Find current time =*/
Eval (exp)
/* Find new time and calculate difference, t */
WriteF (’: time taken \d\n’, t)
ENDPROC

This is Jjust the outline of a program—-it’s not complete so don’t bother
running it. The complete version is given as a worked example later (see

Timing Expressions

) .

1.100 beginner.guide_v39/Quotable expressions

Quotable expressions

There is no restriction on the kinds of expression you can quote,
except that you need to be careful about variable scoping. If you use
local variables in a quoted expression you can only Eval it within the
same procedure (so the variables are in scope). However, if you use only
global variables you can Eval it in any procedure. Therefore, if you are
going to pass a quoted expression to a procedure and do something with it,
you should use only global variables.

A word of warning: Eval does not check to see if the address it’s been
given is really the address of an expression. You can therefore get in a
real mess if you pass it, say, the address of a variable using {var }.

You need to check all uses of things like Eval yourself, because the E
compiler lets you write things like Eval (x+9), where you probably meant to
write Eval (‘'x+9). That’s because you might want the address you pass to
Eval to be the result of complicated expressions. So you may have meant
to pass x+9 as the parameter!

1.101 beginner.guide_v39/Lists and quoted expressions

Lists and quoted expressions

There are several E built-in functions which use lists and quoted
expressions in powerful ways. These functions